
. . . -..

UNCLASSIFIED
SECURITY cWSIFKATION OF nus PAGE

~EPO~T DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION

llnrl::~c:;sifiPrl

2•. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION I DOWNGRADING SCHEDULI':

4. PERFORMING ORGANIZATION REPORT NUMBER($)

NHSU - ECE - 89 - 005

~.NAME OF PERFORMING ORGANIZATION

New Hexi co State Univers ity

6c. ADDRESS (City, State, •nd ZIP Coch)

Las Cruces , NN 88003

Sa. NAME OF FUNDING/SPONSORING
ORGANIZATION

U. S . Army Research Office
Be. ADDRESS (City, State, .Jnd ZIP Coch)

P . 0 . Box 12 2 11

6b. OFFICE SYMBOL
(ff •pplkable)
PARL

8b. OFFICE SYMBOL
(ff •pplk•ble)

Research Triangle Park, NC 27709-2211

11 . TITLE (Include Security ClusifiCition)

1b. RESTRICTIVE MARKINGS

3 . DISTRIBUTION I AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited .

5. MONITORING ORGANIZATION REPORT NUMBER(S)

7•. NAME OF MONITORING ORGANIZATION

U. S. Army Research Office

7b . . ADDRESS (City, St•te, .Jnd ZIP C<KH)

P. 0. Box 12211
Research Triangle Park, NC 27709-2211

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK
ELEMENT NO. NO. NO.

WORK UNIT
ACCESSION NO.

The Contour Model Archite cture and Assembly Language

12. PERSONAL AUTHOR(S)
John B . . Johnston

13a. TYPE OF REPORT l13b. TIME COVERED
I FROM TO

14. DATE OF REPORT (Year, Month, D•y) r 5. PAGE COUNT

16. SUPPLEMENTARY NOTATION
The view, opinions and/or findings contained in: this report are those

~1f~e a~~h~~~~~;~~d ~~9~!2 2~t~~~o(~~~~~~t:e ~~h~H! 9!!!;~!!!<>~~~~rtment of the· Army position,
17. COSATI CODES 18. SUBJECT TERMS (Cont/n~ on rr.wu ff necesury •nd khntify by biO<k tWmber)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on rev~~ if n«esury •nd khntify by block rwmber)

The purpose of this report is limited to presenting the tagged record structure
of the Contour Model Architecture CMA, the static structure of individual snapshots
of a nested module computation as realized inC~~. and · the Contour Model Assembly
Lan guage CHAL. Pe dagogi c illustrations of the Q~L-level evolution of a nested modul e
computa tion a r e gi ven in a sepa rate report.

The Contour Mode l CM as it currently exists can account for most of the semantic
fea tures of a broad spectrum of nes ted module computations;Qf'does not yet contain
specific f ea tures f or input/output, interrupts , or selectively restric ted memory
access . The a r chitec ture QfA a nd the ass·embly language CMAL togethe·r cons titute a
de t a iled operationa l mechanism which reali zed Cl-1 as it currently · exists. CHA is a
re l a tivel y conventional, full y tagged, stack- oriented architecture' whose t agged r ecord
s t r uc ture and as se·mbly l anguage are intended to be implemented in mi cocode.

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT
0 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT.

21. ABSTRAO SECURITY CLASSIFICATION
0 OTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (lnd!J<M Are• Code) 22c. OFFICE SYMBOL

DO FORM 1473,84 MAA ll APR edition may be used untH •xhaun.d.
- All other editions are obsolete.

SECURITY a.ASSIFICATlON OF THIS PAGE

UNCLASSIFIED

THE CONTOUR MODEL ARCHITECTURE
AND ASSEMBLY LANGUAGE

JOHN B. JOHNSTON

NMSU-ECE-89:-005
June 1989

CONTOUR HODEL ARCHITECTURE
and ASSEMBLY LANGUAGE

Table of Contents

0.

1.

1. 0.

1.1.

2.

2.0.

2. 1.

2 . 1. 0.

2.1.1.

2.2.

2.2.0.

2. 2. 1.

2.2 .2.

2.3.

3.

3.0.

3. 1.

3. 1. 0.

00
01
02
03
01l
05
06

3.1.1.

00
01
02
03
01l
05
06
07

3. 1.2 .

00
01
02
03
01l

INTRODUCTION

CONTOUR HODEL ARCHITECTURE TAGGED RECORD STRUCTURE

MONO RECORD STRUCTURE

POLY RECORD STRUCTURE

NESTED MODULE COMPUTATION STATIC SNAPSHOT STRUCTURE

STATIC STRUCTURE OF THE PROGRAM COMPONENT

STATIC STRUCTURE OF THE EXECUTION COMPONENT

ACCESS SKELETON

STACK SKELETON

ENVIRONMENTS

ACCESS ENVIRONMENTS

PROyRAM ENVIRONMENTS

STACK ENVIRONMENTS

RECORD RETENTION AND REFERENCE COUNTS

CONTOUR HODEL ASSEMBLY LANGUAGE : CHAL

THE CMA INSTRUCT ION CYCLE

DATA MOVEMENT WITHIN THE VIRTUAL PROCESSOR WORKSPACE

DATA MOVEMENT WITHIN THE STACK
nop
pop
dup
SHP

cab
bca
psh

no-operation
pop top record and discard
duplicate top record
sHap top tHo records
permute top three records
permute top three records
push folloHing mono record onto stack

DATA MOVEMENT BETWEEN WORKING REGISTERS AND THE STACK

RANGE OF n:

sav Rn
res Rn
xch Rn
sav
res
tele sav
clr Rn
c lr

0 <= n <= F

save Rn to stack
restore Rn from stack
exchange Rn and top record
save selected registers to stack
restore selected registers from stack

clear Rn
clear selected registers

DATA MOVEMENT BETWEEN SPECIAL REGISTERS AND THE STACK
xch sp
rev sp
xch dp
res dp
sav pid

exchange sp and top record
revert sp
exchange dp and top record
restore dp from stack
save pid register to stack

Page 001 of 006
Ill Jun 89

001

001

001

002

001l

001l

005

005

005

005

005

006

006

006

006

006

007

007

007
007
007
007
007
008
008

008

008
008
008
009
009
009
009
009

010

010
010
010
010
010

Table of Contents (continued)

3. 1. 2.

05
06
07

3.2.

3.2.0.

3.2.0.0.

00

3. 2. 1.

3.2 . 1. 0.

00
01
02

3.2.1.1.

00
01
02

3.2.2.

3.2.2.0.

00
01

3.2 .2.1.

00

3.2.2.2.

00

DATA MOVEMENT BETWEEN SPECIAL REG ISTERS AND THE STACK (continued)

xch ip
res ip
sav ep

exchange ip and top record
restore ip from stack
save ep to stack

SCALER DATA MANIPULATION INSTRUCTIONS

NULL PRODUCING INSTRUCTIONS

DEGREE 0 NULL PRODUCING INSTRUCTIONS

mak null push null to stack

TAG PRODUCING INSTRUCTIONS

DEGREE 0 TAG PRODUCING INSTRUCT IONS

RANGES :

mak tag mmm
mak tag vp

mmm E <type mono >; vp * ppp E <type poly>

push tag mmm to stack
push tag vp to stack

imm mak tag ppp push tag ppp to stack , immediate size

DEGREE 1 TAG PRODUCING INSTRUCTIONS

RANGE: vp * ppp E <type poly>

mak tag ppp
tak tag

push tag ppp to stack, size on stack top
push tag of top record

ind tak tag push tag of top record, indirect

LOGICAL PRODUCING INSTRUCTIONS

DEGREE 0 LOGICAL PRODUCING INSTRUCTIONS

mak false
mak true

push log f
pusk log t

DEGREE LOGICAL PRODUCING INSTRUCTIONS

not logical complement top record

DEGREE 2 LOGICAL PRODUCING INSTRUCTIONS

'

XXX xxx E {and, or, xor, nand, nor , ... }

3.2.2.2.0. DEGREE 2 ARITHMETIC RELATIONAL INSTRUCTIONS

00
01
02
03
04
05

gt
ge
le
lt
eq
ne

greater than
greater than
less than or
less than
equal to
not equal to

or equal to
equal to

3.2.2.2. 1. DEGREE 2 GENERAL RELATIONAL INSTRUCTIONS

00
01
02
03

3.2.3.

3.2.3.0.

00
01

eq
ne
ind eq
ind ne

equal to
not equal to
equal to, indirect
not equal to, ind ired

REGISTER SELECTOR PRODUCING INSTRUCT IONS

DEGREE 0 REGISTER SELECTOR PRODUCING INSTRUCT IONS

ma sk none select no registers (push msk 0000)
mask all select all register (push msk FFFF)

Page 002 of 006
Ill Jun 89

010

011
011
011

011

011

011

011

012

012

012
012
012

012

012
012
012

013

013

013
013

013

013

013

013

013

013
013
013
013
013
013

013

013
013
013
01 3

01'l

01'l
01'l

Table of Contents (continued)

3.2.3.1.

00

3.2.3.2.

00

3.2.'L

3.2.<1 .0.

00
01
02
03

3.2.<1.1.

00
01
02
03
04
05
06
07

3.2.<1.2.

00
01
02
03
04
05
06

3.3.

00
01
02
03
0<1
05
06
07

3. 4.

3.<1.0.

00

3. <1. 1.

00
01
02
03
0<1
05

DEGREE 1 REGISTER SELECTOR PRODUCING INSTRUCTIONS

not bit complement mask on stack top

OEGREE 2 REGISTER SELECTOR PRODUCING INSTRUCTIONS

XXX xxx E {and, or, xor, nand, nor, . .. }

INTEGER PRODUCING INSTRUCTIONS

DEGREE 0 INTEGER PRODUCING INSTRUCTIONS

mak zero push int 0
mak one push int 1
tak stk len push stack length
tak stk tos push stack tos

DEGREE 1 INTEGER PRODUCING INSTRUCTIONS

not bit complement (1's complement)
neg negative (2's complement)
abs absolute value
tak len push len of poly record
tak ref push ref of poly record
tak tos push tos of stack
te le tak stk len tak s tk len of other vp
te le tak stk tos tak stk tos of other vp

DEGREE 2 INTEGER PRODUCING INSTRUCTIONS

XXX
add
sub
mpy
intdiv
quot
rem

RECORD ALLOCATION

RANGE :

get stk
xch stk
sav stk
alocopy
aloe vp
imm aloe ppp
aloe ppp
aloe

xxx E {and, or, xor, nand, nor, . .. }
add top two
subtract top from next
multiply top two
divide top into next, giving quot ient & remainder
intdiv, leaving only quotient
intdiv, leaving only remainder

vp * ppp E <type poly>

get new stack record, immediate s lZe
exchange stack records
save duplicate of stack record with selected registers
allocate copy of poly record
allocate virtual processor
allocate record of type ppp, immediate s ize
allocate record of type ppp, s ize on stack
allocate poly record, using tag on stack

POINTER AND SUBPOINTER OPERATIONS: SELECTION AND INDEX MODIFICATION
("sel" means "push subpointer onto stack")

THE BREAK-SUBPOINTER INSTRUCTION

brk subptr break subpo inter

THE TWO-ARGUMENT SELECTION INSTRUCTIONS (select)

LOCATION OF : POINTER INDEX

se l *,x stack immediate
se l *·* stack stack
se l *,Rj stack Rj
se l R i. X Ri immediate
se l Ri, * Ri stack
se l R i, Rj Ri Rj

Page 003 of 006
1<1 Jun 89

01<1

01<1

014

014

01<1

01<1

01<1
014
01<1
01<1

01<1

01<1
014
01<1
01<1
01<1
01<1
01<1
015

015

015
015
015
015
015
015
015

015

016
016
016
017
017
017
017
017

017

018

018

018

018
018
018
019
019
019

Table of Contents (continued)

3.4.2.

00
01
02
03
04
05
06
07
08
09
10
11

3.4.3.

00
01
02
03
04
05

3.4.4.

00
01
02
03
04
05

3.5.

3.5.0.

00
01
02

3. 5. 1.

00
01
02

3.5.2.

00
01
02
03
04
05
06
07
08

THE THREE-ARGUMENT POINTER SELECTION AND INDEX MODIFICATION INSTRUCTIONS
(modify-then-select and select-then-modify)

LOCATION OF: POINTER INDEX

modsel ~t,Rj,m stack Rj
selmod ~t,Rj,m stack Rj
modsel ~t,Rj ,* stack Rj
selmod *,Ri,* stack Rj
modsel *,Rj,Rk stack Rj
selmod *,Rj,Rk stack Rj
modsel Ri,Rj ,m Ri Rj
selmod Ri,Rj ,m Ri Rj
modsel Ri,Rj ,* Ri Rj
selmod Ri,Ri,* Ri Rj
modsel Ri,Rj,Rk Ri Rj
selmod Ri,Rj,Rk Ri Rj

THE TWO-ARGUMENT SUBPOINTER INDEX MODIFICATION AND SELECT ION
(modify-then-select and select-then-modify)

LOCATION OF: SUBPOINTER MODIFIER

modsel Ri,m Ri immediate
selmod Ri,m Ri immediate
modsel Ri,* Ri stack
se lmod R i, * Ri stack
modsel Ri,Rj Ri Rj
selmod Ri,Rj Ri Rj

THE TWO-ARGUMENT SUBPOINTER INDEX MODIFICATION INSTRUCTIONS

LOCATION OF: SUBPOINTER MODIFIER

modsub *,m
modsub *·*
modsub *,Rj
modsub Ri,m
mod sub Ri, 11
modsub R i, Rj

stack
stack
stack
Ri
Ri
Ri

immediate
stack
Rj
immediate
stack
Rj

MODIF IER

immed iate
immediate
stack
stack
Rk
Rk
immed iate
immediate
stack
stack
Rk
Rk

INSTRUCTI ONS

DISPLAY VECTOR RELATED INSTRUCTIONS ("OV" means display vector)

DISPLAY VECTOR FETCH INSTRUCTIONS

fet dsp x
fet dsp 11
fet dsp Ri

fetch from DV, immediate index
fetch from DV, stack index
fetch from DV, register index

DISPLAY VECTOR STORE INSTRUCTIONS

sto dsp x
sto dsp *
sto dsp Ri

store into DV, immediate index
store into DV, stack index
store into DV, register index

DISPLAY INSTRUCTIONS FOR ACCESSING INTO EXECUTION CONTOURS

LOCATION OF: DV INDEX E-CON INDEX

dsp x, y immediate immediate
dsp x,11 immediate stack
dsp x,Rj immediate Rj
dsp *,Y stack immediate
dsp *•* stack stack
dsp ~t,Rj stack Rj
dsp Ri,y R i immediate
dsp Ri,* Ri stack
dsp Ri,Rj Ri Ri

Page 00ll of 996
14 Jun 89

019

019
020
020
020
020
020
021
021
021
021
021
022

022

022
022
023
023
023
023

023

024
024
024
024
024
025

025

025

025
025
025

026

026
026
026

026

027
027
027
027
028
028
028
028
029

Table of Contents (continued)

3.6.

00
01
02
03
04
05

3. 7.

00
01
02

3.8.

3.8.0.

00
01
02
03
04

3.8.1.

00
01

3.8.2 .

3.8 .2.0.

00
01
02

3.8.2 . 1.

00
01
02

3.8.3.

3.8.3.0.

00
01
02
03
04
05

3.8.3.1.

00

LABEL MANIPULATION INSTRUCTIONS

brk i-lab break i-lab
brk ip-lab break ip-lab
brk cp-lab break cp-lab
mak i -lab make i-lab
mak ip-lab make ip-lab
mak cp-lab make cp-lab

DATA MOVEMENT BETWEEN THE VIRTUAL PROCESSOR STACK AND MEMORY

fet
sto
stor

CONTROL INSTRUCTIONS

BRANCHES

CONDITION ON L:

CONDITION ON ip:

b @L
bt @L
bf aL
jmp
jsb

LEAPS

leap
te le leap

fetch
store d ired
store reverse

L must be a label of some instruct ion in the
current instruction record
ip must point to some instruction in the
current instruction record

branch unconditionally to L
branch to L if tos rec true; pop tos rec
branch to L if tos rec false; pop tos rec
ump using ip from stack (res ip)
jump sub using ip from stack (xch ip)

leap using i -lab from stack; pop i - lab
cause other vp to leap

TELE DISPLAY VECTOR INSTRUCTIONS

TELE DISPLAY VECTOR FETCH INSTRUCTIONS

RANGE OF i: 0 <= i <= F

tele fet dsp x cause other vp to fet dsp x
tele fet dsp * cause other vp to fet dsp *
tele fet dsp Ri cause other vp to fet dsp Ri

TELE DISPLAY VECTOR STORE INSTRUCTIONS

RANGE OF i: 0 <= i <= F

tele sto dsp x cause other vp to sto dsp x
tele sto dsp * cause other vp to sto dsp *
tele sto dsp Ri cause other vp to sto dsp Ri

MODULE ENTRY INSTRUCTIONS

MODULE ENTRY STACK

sav
tele sav
xch lab
te le xch lab
sav stk
xch stk

INSTRUCTIONS

save selected registers
cause other vp to save selected reg isters
exchange labels
cause other vp to xch lab
save duplicate of stack record Kith mask and selected registers
xchange stack records

THE EXECUTION CONTOUR ADJUNCTION INSTRUCTION

adjoin adjoin-and-link neH e-con

Page 005 of 006
14 Jun 89

029

029
029
030
030
030
030

030

031
031
032

032

032

032
032
032
032
033

033

033
033

034

034

034
034
035

035

035
035
035

036

036

036
036
036
036
036
036

036

037

Table of Contents (continued) Page 006 of 006
14 Jun 89

3.8 .4. MODULE EXIT STACK INSTRUCTIONS 037

ABBREVIATIONS: stk = stack
lab = labl (i-lab)
reg = registers
val = value
ep = environment pointer
c-rvrt = conditional duplication revert

00 rs revert stk 038
01 cs c-rvrt stk 038
02 ee extract ep 038
03 r l restore lab 038
04 d l discard lab 038
05 rsee revert stk, extract ep 038
06 csee c-rvrt stk, extract ep 038
07 rsr l revert stk, restore lab 038
08 csrl c-rvrt stk, restore lab 038
09 rlrr restore lab, restore reg 038
10 dlrr discard lab, restore reg 038
11 rsrlrr revert stk, restore lab, restore reg 039
12 csrlrr c-rvrt stk, restore lab, restore reg 039
13 rvrs retain va l, revert stk 039
14 rvcs retain va l , c-rvrt stk 039
15 rvee retain val, extract ep 039
16 rvr l retain val, restore lab 039
17 rvd l retain val, discard lab 039
18 rvrsee reta in val, revert stk, extract ep 039
19 rvcsee retain val, c-rvrt stk, extract ep 039
20 rvrsr l retain val, revert stk, restore lab 039
21 rvcsr l retain val, c-rvrt stk, restore lab 040
22 rvrlrr retain val, restore lab, restore reg 040
23 rvdlrr retain va l, discard lab, restore reg 040
24 rvrsrlrr retain val, revert stk, restore lab, restore reg 040
25 rvcsrlrr retain va l, c-rvrt stk , restore lsb, restore reg 040

0. INTRODUCTION

CONTOUR MODEL ARCHITECTURE
and ASSEMBLY LANGUAGE

22 Jun 89 Page 001 of 043

The purpose of this report is limited to presenting the tagged record structure of the Contour Model
Archi tecture CMA, the static structure of individual snapshots of a nes t ed modu le computation as rea l ized in
CMA, and the Contour Model Assembly Language CMAL. Pedagogic illustrations of the CMAL-level evolution of a
nested modu le computation are given in a separate report .

The Contour Model CM as i t cu rrently exists can account for most of the semant ic features of a broad spectrum
of nested module computations; CM does not yet contain spec i fie features for input/output, interrupts, or
selectively restr icted memory access . The architecture CMA and the assembly language CMAL to ge ther constitute
a detailed operational mechanism Hhich realizes CM as it current ly exis t s. CMA is a relatively conventiona l,
fully tagged, stack-oriented architecture whose tagged record structure and assembly language are intended to
be imp lamented in microcode. The architectural potency required of CMA to realize CM is contained in: the
ta gged record structure (sec. I); the computation snapshot structure, including the record retent ion feature
(sec . 2); and a few special instructions of the assembly language CHAL (sec. 3). CMA in corporates a segmented
virtua l memory system Hith provisions for HULTICS-like dynamic linking, but detai ls of this memory system are
treated in a separate report; for purposes of this report it suffices to envision memory as simply a large
sequence of byte-size memory units, each individually addressable.

A nested module computation is a time-sequence of snapshots. Each snapshot is a data structure having both a
program component and an execution component . In this report, the program component is tr ea t ed as being time
invariant throughout a computation; the course of execution of the program is recorded ln the execu ti on
compo nent . A data structure is composed of poly records and their mono record subrecords.

1. The Contour Model Architecture Tagged Record Stucture

The re are tHo classes of records in CMA: mono recorda, which are elementary data items, and poly records,
~hich are aggrega~e data it ems . Only poly records can be allocated; mono records can ex ist only as subrecords
of poly records. Each record is a byte sequence which is the concatenat io n of two bi t sequences: a tag and a
value. The syntactic structure and byte length of a record are determined by the tag of the record and re main
invariant during the lifetime of the record.

1.0. Mono Record Structure

A mono record is the concatenation of a tag and a value. The tag of a mono record consists simply of a fixed
but unspecified bit pattern called the type field of the tag . The value of a mono record is a bit pattern
iihich has a mean ing only when interpreted relative to the tag of the mono record. Each mono record has
associated with i t a finite set of bit patterns Hhich can serve as values of mono records hav ing t hat type.
The types, values, and syntactic structures of mono records are specified by the syntax for mono records
displayed in Table 1.

The null mono record has a vacuous - that is, zero bit length - value, and a tag type f ie ld Hh ich is a byte
consisting of eight 0 bits; null is the only mono record "hose tag bit pattern is specified. There are only
two disti nct logical values: f (false) and t (true). The value of a tag mono record may be the tag of any
mono record or the tag of any poly record ; since tags of mono and poly records may be of various di fferent
lengths, the value of a tag record determines it's own length and hence that of the tag record . A mask mono
record serves as a register selector for saving and restoring selected virtual processor registers t o and from
the virtual processor stack; the 16 mask value bits <msk.0>, ... , <msk.F> are in one-to-one correspondence
"ith the 16 virtual processor registers R0, ... , RF, and serve to identify the registers whose contents are
to be saved or restored. The integer values are bit patterns of some fix ed but unspecified bit length which
represent integers according to the 2' s comp lament interpretation . The value of a po inter mono record is
interpreted in such a manner that the pointer mono record in ef fec t points to the tag of some poly recor d; the
syntactic structure and interpretation of a pointer value are given in a separate report. The va lue of a
subpo inter mo no record is the concatenation of a pointer value and an integer value which serves as a
subrecord index; hardware use of such a subpo inter value to access an indexed subrecord requires mic r ocode
interpretation of the tag of the poly record po inted to by the pointer value portion of the subpoint er va lue.
In this report we shall indicate pointer values in the symbolic form " @ P", where "P" is an identifier which
designates the intended target poly record. A <cp> is a contour-pointer , that is, a pointer Hhose tar get poly
record is a program contour. An < ip> is an instruction-pointer, that is, either a pointer "h ich points to an
inst ruction record or else a subpointer "hich points to a code byte subrecord of an in struction record. An
<ep> is an environment-pointer, Hhich either is null or else is a po inter whose target po ly record is an
execution contour; as discussed in sec. 2, an environment-point er identifies what is known as an execution
environment. A contour-label mono record thus designates both a program contour and an execution environment,
while an instruction-label mono record designates both a code point with in an instruct ion rec ord and an
executi on environment. Ari <iden>, or identifier, is a non-empty sequence of letters and digits, the first of
which is a capital letter.

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE

00 <rec mono>
01 <rec mmm>
02 <type mono>
03 <type scaler>
04 <type struct>
05 <tag mono>
06 <tag mmm>
07 <val null>
08 <val log>
09 <val tag>
10 <val msk>
11 <msk.i>
12 <val int>
13 <sign>
14 <magnitude>
15 <nv seq digit>
16 <digit>
17 <val ptr>
18 <val subptr>
19 <subrec desig>

:: =
: : =
: ::
f f =
•. =
0 . =
.. =
:: =
:: =
.• =
:: =
:: =
:: =
• 0 =
:: =
• 0 =
~ : =
•• =
:: =
•• =

<rec mmm>
<tag mmm> <val mmm>
<type scaler> I <type struct>
null I log I tag I msk I int
ptr I subptr I i-lab I ip-lab I cp- lab
<tag mmm>
mmm
t

f I t
<tag mono> I <tag poly>
<msk.F><msk .E> ... <msk.0>
0 I 1
<sign><magnitude>
c I + I -
<nv seq dig it>
<digit> I <nv seq digit><digit>
0111213141516171819
8 <iden>
@ <iden>.<subrec desig>

<iden>

22 Jun 89 Page 002 of 043

mmm c <type mono>
mmm c <type mono>

mmm c <type mono>
mmm c <ty pe mono>
(c means vacuous)

(false or true)

0 < < vp.len = 16

20 <spec subrec desig> :: =
<val int> I <spec subrec desig>
len I ref I p id I lab I ip I ep
con I dsp I tos I xref I x lab
<c ap let><seq iden char>

sp I dp I ap I

21 < iden>
22 <seq iden char>
23 <iden char>
24 <cap let>
25 <small let>
26 <val i-lab>
27 <val ip-lab>
28 <val cp-lab>
29 <ip>
30 <pip>
31 <cp>
32 <ep>

:::
: : :
:::
• 0 =
:: = .. :
:: =
•• =
•• =
:: =
•• =
:: =

c I <seq iden char>< iden char>
<cap let> I <small let> I <digit>
A I ... I Z
a I ... I z
<ip> <ep>
<pip> <ep>
<cp> <ep>
<rec subptr>
<rec ptr>
<rec ptr>
<rec ptr> I null

Table 1: A Syntax for CMA Mono Rocords

1.1. Poly Record Structuro

instruct ion label
instruct io n procedure label

contour procedure label
instruction pointer

instruct ion procedure pointer
con tour procedure pointer

environment pointer

A poly record is the concatenat ion of a tag and a value. The tag of a poly record cons ists of a fixed but
u~specified bit pattern called the type field of the tag, zero or more spec ial bits whose us e depends on the
type of poly record, and an embedded integer mono record called the length f ield wh ich is program accessib le
as a read-only special subrecord. The value of a poly record consis t s of : an integer mono record called the
reference count field which is program accessible as a read-only spec ial subrecord of the poly re cord; zero or
more additional special subrecords depending on the type of poly record; and zero or more non-special
subrecords . The length special subrecord of a poly record equals the number of non-specia l subrecords of the
poly record; this length is set by microcode during allocation of the poly record and remains f ixed dur ing the
lifetime of the poly record. The reference count special subrecord of a poly record is maintain ed by
microcode to reflect the number of (sub)pointers (in) to the poly record. Each spec ial or non-spec ial
su brecord of a poly record begins at a byte pos ition within the poly record wh ich depends solely on the index
of the subrecord and the tag of the poly record, and not on the type of the subrecord. Special subrecords of
poly records have negative indexes, and are always mono records. Non-spec ial subrecords of a poly record have
ordinal (non-negative) indexes ; depending on the type of the poly record, either all lts non -spec ial
subrecords are mono records or else all its non-special subrecords are s ingle bytes. The types and syntact ic
str uctures of poly records are specified by the syntax for poly records disp layed in Table 2.

A text poly record has ho special subrecords: the length field (ind ex -2), and t he refere nce count fie ld
(i ndex -1) . Each non-special subrecord of a text poly record is an 8-b it byte representi ng on e of the 256
characters.

An instruction poly record has three special subrecords : the length field
fleld (index -2), and the environment pointer subrecord (index -1).
instruct ion poly record compr ise a byte sequence Kh ich constitutes the
instruct ions.

(index - 3), and the ref erence count
The non-special subrecords of an
coded for m of a sequence of CMAL

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 003 of 043

00 <rec poly> . • =
01 <rec ppp> I 0 =
02 <type poly> .• =

03 <type poly byte> :: =
04 <type poly mono> :: =
05 <tag poly> .. :
06 <tag ppp> • • =
07 <tag ppp> :: =
08 <ppp. len> :: =
09 <tag vp> :: =
10 <vp state> :::
11 <refval ppp> :: =
12 <ppp.ref> :: =
13 <val txt> : : =
14 <txt.i> 0. =
15 <val ins> . • =
16 <ins. i> : : =
17 <byte> .• =
18 <byte. i> : : =
19 <bit> •• =
20 <val stk> . . =
21 <stk.tos> • • =
22 <stk.sp> : : =
23 <sp> :: =
24 <stk. i> :: :
25 <val vet> 0. =
26 <vet. i> :: =
27 <val p-eon> • 0 =

28 <p-con.ord> . . =
29 <p-eon. tag> .• =
30 <p-eon. ip> • 0 =
31 <p-con.ep> : : =
32 <p-eon . i> • 0 =
33 <val e-con> 0. =

34 <e-con.dsp> •• =

35 <e-con.sp> • 0 =
36 <e-con.ap> :: =
37 <ap> • 0 =
38 <e-con.ep> : : :
39 <e-con. i> : : =
40 <val vp> . • =

41 <vp.pid> :: =
42 <vp.dp> : : =
43 <vp . sp> : : =
44 <vp,lab> 0 0 =
45 <vp. i> .. :
46 <vp reg Ri> :::

<rec ppp>
<tag ppp> <refval ppp>
<type poly byte> I <type poly mono>
txt I ins

ppp t <type poly>
ppp c <type poly>

stk I vet I p-eon I e-con I vp
<tag ppp>
ppp <ppp. len>
con <ppp.len>
<rec int>
vp <vp state>

ppp t <type poly>
p-con,e-con,vp, * ppp c <type poly>

ppp = p-con,e-con
vp * ppp c· <type poly>

(impl icitly, vp.len = 16)
ne" I a"ake I asleep I terminated
<ppp , ref> <val ppp> ·
<rec int>
<txt . 0><txt. 1 > ... <txt. n>
<char> (256 character set)
<ins .ep> <ins.0><ins . 1> .. . <ins . n>
<byte>
<byte.0><byte. 1> . .. <byte.7>
<bit>
0 I 1
<stk.tos> <stk.sp> <stk.0><stk.1 > . . . <stk.n>
<rec int>
<sp>
null I <rec ptr>
<byte>
<vet. 0><vet, 1 >, .. <vet . n>
<rec mono>
<p-con.dsp> <p-con.con>
<p-con.0> <p-eon . 1>
<rec int> I null
<r ec tag>
<ip>
<ep>
<rec mono>

<p-eon. ip> <p-eon. ep>
<p-con.n>

<e-con : dsp> <e-con . sp> <e-con.ap> <e-con.ep>
<e-con. 0> <e-con. 1 > ... <e-con. n>
<rec mono>
<sp>
<ap>
<rec ptr>
<ep>
<rec mono>
<vp ,pid> <vp.dp> <vp.sp> <vp,lab>
<vp.0> <vp . 1> .. . <vp .F>
<rec ptr>
null I <rec ptr>
<sp>
<rec i- lab>
<vp reg Ri>
<rec mono>

ppp (<type poly>
ppp (<type pol y>

n = txt. len-1
0 < < txt. len

n = ins . len-1
0 < < ins. len

n = stk.len-1

stack ptr
0 ~ < stk. len

n vd.l en- 1
0 < < vd . len

n = p-eon. len-1

see 1. 0. 27
see 1. 0. 28

0 < < p-eon. le n

n = e-con. len-1

see 1. 1. 23

antecedent ptr
see 1.0.28

0 < i < e-con . le n

processor iden t ity register
display ptr
see 1. 1.23

label register
"ork ing reg ister Ri
0 ~ i < vp. len = 16

Table 2: A Syntax for CHA Poly Records

A stack poly record has four special subrecords: the length field (index -4), the reference count fi e ld
(index -3). the top-of-stack subrecord (index -2), and the stack pointer subrecord (index -1). The
non-special subrecords of a stack poly record comprise a byte sequence Mhich constitutes t he place of
residence for the mono records Mh ich are pushed into and popped fro m the stack record. At all t imes , th e
top-of-stack integer has a non-negative value Mhich does not exceed the value of the length f ie ld. The stack
record is empty if and only if the top-of-stack integer equals the length f ie ld. When t he st ack rec or d is
non-empty : the top-of-stack integer is the index of the first byte of (the tag of) the ef f ect ive ly " t o~· mono
record in the stack, the first byte of (the tag of) each non-top mono record in the stack im med iately follows
the last byte of (the value of) the immediately preceding mono record in the stack, and the last byte of (the
value of) the effectively- "bottom" mono record in the stack is the last byte of (the value of) the st ack

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 004 of 043

record. The top mono recor:d-contained in a non-empty stack record is popped out by a microcode acti on which
reads out (and then clears) the successive bytes of the top mono record while in cremen tin g th e to p-of -stack
integer, according to the tag of the top mono record . A neH top mono record i s pushe d in to a non - ful l sta ck
record by a microcode action Hhich decrements the top-of-stack integer Hhi le Hri t ing in t he successive byt es
of the new mono record in reverse order, according to the tag of the new mono record. A s t ack r ecord is
effectively full relative to an attempt to · push in a neH mono record if and only if t he byte le ngth of th e neH
mon? record exceeds the top-of-stack integer.

A vector poly record has two special subrecords: the length field (i nde x -2). and t he r e f erence count field
(index -1). The byte length of the space reserved H ith in the vector record value for each non-speci a L
subrecord equals the byte length of the longest type of mono record, name ly an instruction la be l which
incorporates the sub-pointer form of <ip> and the pointer form of <ep>; each ac t ua l non-special mono su bre co r d
of the vector record is left-justified in the space reserved for it .

A program-contour poly record has six special subrecords: the length fi e ld (index -6). th e ref er enc e count
field (index -5). the ordinal subrecord (index -ill. the tag subrecord (i nde x -3) , th e ins t r uction -point er
subrecord (index -2). and the environment-pointer subrecord (index - 1). Th e non- spe c ial subrecords of a
program contour are handled in the same manner as for a vector record .

An execution-contour poly record has six special subrecords: the leng th f ie l d (in dex -6), the reference count
f ield (index -5), the display management subrecord (index -ill, the s t ac k-po int er subr eco r d (index -3) , the
antecedent-pointer subrecord (index -2), and the environment-po inter subr ecord (index -1). The non - speci a l
subrecords of a execution contour are handled in the same manner as for a vecto r recor d.

A virtual processor poly record has five special subrecords: the reference count f i e ld (inde x -5), the
processor-identity register (index -ill. the display-pointer reg ister (index -3), t he stack-po inter register
(index -2). and the instruction-label register (index -1); the usua l l ength f i eld is abse nt s ince th e CXA
des ign provides 16 non-special subrecords for all virtual processors . The 16 non-spec i al subrecords of a
virtual processor are considered to be the 16 Harking registers R0, R1, . . . , RE, RF, and t hey ar e handled in
the same manner as for a vector record. A short field in the virtual processor tag ser ves to regis te r under
microcode control the dynamic state of the virtual processor. The processor identity reg ister of a virt ua l
processor contains a read-only pointer to the virtual processor itself; this register is set at the time of
allocation of the virtual processor, and constitutes identification of the vir t ual processor .

The roles of the var ious special subrecords of poly records are furt her explai ned in sees. 2 an d 3.

2. Nested Module Computation Static Snapshot Structure

A nested module computation is a time sequence of snapshots. Each snapsh ot is a se lf -cont a ined data st r uctur e
which has a natural decomposition into a program component and an execution component . A se l f-c on t a ined data
structure is a data structure all of Hhose contained (sub)pointer mono recor d subr ec or ds point (in)to po ly
records belonging to the data structure . The program component of a snaps hot is a self-con t a ined da t a
structure; the execution component of a snapshot is generally not a self-conta ined data st ructur e , s ince it
usually contains (sub)pointers which point (in)to poly records of the program component . In thi s r ep ort, the
program component of a computation is to be regarded as time-invar iant, that is , the sa me in a ll snapshots of
t he computation. The execut i on component, hoHever, evolves rapid ly thr ough succ essive snapshot s of the
computation. Thus a computation may quite properly be regarded as an execution of it s pr ogra m compo nent, nith
t he course of the execution being recorded in the execution component .

2. 0 Static Structure of the Program Component

The program component is a self-contained data structure cons i st ing of two parts: a program skeleton, and
add i tional constant structure which is pointed to from Hi thin the program skeleton. The skele tal structure is
of central importance for nested module computat i ons and a spec ial i zed form and purpose, whil e the add iti on a l
constant structure is specific to individual programs and can be quite arbitrary. Hence He descri be in t his
report only the skeletal structure, leaving descriptions of t he addi tional const ant s t r ucture to
considerations of specific programs.

The program skeleton is a forest structure composed of program con tou r s an d in s truct ion record s . The
environment pointers of the program contours and instruct ion recor ds co ns t i tute the links 11h ich r ea li ze th e
forest structuring of the program skeleton: each such environment pointe r either is null or i s a pointer to
some program contour in the program skeleton . A record R in the pr ogram skele t on , e i t her e pr ogram contou r or

an instruction record, is the root of some tree Hithin the forest structure if and onl y if R is an ins truction
record. Al l non-null environment pointers in the program skeleton po int aHay from tre e leav es and to11ard tr ee
r oots . The instruct ion po inter of a program contour R in t he prog ram sk e l eton is a (s ub) pointer nhich po in ts
(in Ito some instruct ion record in the program skeleton Hhose env ir onment poin t er in t ur n i s non-nul l and
points to R. The fo lloH ing statements are cons is tent with all the above constraints and are presen te d t o
suggest the variety of program skeleton structures which can occur in pract ice; a progra m contour is nev er a
tree Leaf but may be a tr_e_e root; an instruct ion record is a lHays a tree leaf, and may aLso be a tree r oo t ; an

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 005 of 043

instruct ion record need n·ot be pointed (in)to by the instruct ion pointer of any program contour; and, if an

instruction record I is pointed (in)to by the instruction pointer of some program contour R then the

env ironment pointer of I is non-null and points to R.

2.1. Static Structure of the Execution Component

The execution environment is a generally non-self-contained data structure consist ing of two parts: a

dynamically varying execution skeleton, and additional dynamic structure Kh ich is is pointed to from H ith in

the execution skeleton. The dynamic skeleton is of central importance f or nested module computations and has

a specialized form and purpose , Khile the additional dynamic structure . i s specific to individual computat ions

and can be quite arbitrary. Hence Ke describe in this report only the skeletal structure, l eav ing

descriptions of additional structure to considerations of speci f ic co mputations.

The execution skeleton is com·posed of ho interconnected forest structures: the access skeleton and the stack

skeleton .

2.1.0 The Access Skeleton

The access skeleton is a forest structure composed of execution contours and virt ual processors. The

environment pointers of the execution contours and the environment pointer portions of the instruc t ion labels

of th e virtual processors constitute the links Kh ich realize the forest structur ing of the access skeleton:

each such environment pointer either null or is a pointer to some execution contour in the access skeleton. A

record R of the access skeleton , either an execution contour or a virtual processor , is the r oot of some tree

Hithin the forest structure if and only if the environment pointer of R is null. Each virtua l processor in

the access skeleton is necessarily a leaf of some tree Kithin the forest structure. Al l non-null environment

pointers in the access skeleton point aKay from tree leaves and to11ard tree roots. An execut ion contour may
be a tree leaf in the access skeleton; both execution contours and virtual processors may be tre e roots in th e

access skeleton.

With in each snapshot, the access skeleton is related to the program skeleton as fo llot~s. The an te cedent
pointer of an execution contour in the access skeleton is a po in ter wh i ch points to some program con tour in

the program skeleton. Let IP and EP be the· instruction pointer and env ir onm en t pointe r port ions of the

instruct ion label of some virtual processor in the access skele ton; I P is necessarily a subpo inter Hh ich

points into some instruction record I of the program skeleton. EP is null if and only if the envir onment

pointer of I is null. If EP is non-null then EP is necessar i ly a pointer which poin ts t o some executi on
contour EC in the access skeleton, and the antecedent pointer of EC is necessari ly a poin ter 11hich poin ts to
some program con~ our PC in the program skeleton; the environment pointer of I is necessari ly a pointer which

points to PC.

2. 1. 1. The Stack Ske laton

The stack skeleton is a forest structure composed of stack records together " ith the execution contours and

virtual processors comprising the access skeleton. The s t ack pointers of the stack ske l eton records

constitute the links Khich realize the forest structuring of the stack ske l eton . A r ecor d R in the stack

skeleton is the root of some tree Kithin the forest structure if and only if the stack pointer of R is nul l .

A record R in the stack skeleton is a leaf of some tree "ith in the forest structure if and only if R is an

execution contour or a virtual processor in the access skeleton. Al l non-null po inters in t he stack skeleton

po int away from tree leaves and toKard tree roots.

A stack record in the stack skeleton which is pointed to by the stack pointer of a virtua l processor in the

access skeleton is not pointed to by any other pointer in the execut ion component; the stack record is said to

be a ttached to the virtual processor, and is used by that virtual processor for expression evaluation and for

the bookkeeping associated Kith entries into and exits from program modu les.

2.2. Environments

Wit hin a snapshots of a nested module computation, three types of en vi ron me nts are _of inte rest: access

environments , program environments, and stack environments. An access environment is an env ironment with in

t he reduced access skeleton, Khich is the forest structure compr i s ing just the execut ion contours of t he

access skeleton . A program environment is an environment "ith in the reduced program skeleton, Kh i ch i s the

forest structure comprising just the program contours of the program ske leto n. A stack environment is an

environment Kithin the reduced stack skeleton, which is the forest structure comprising just the stack r ecords

of the stack skeleton .

In any fo rest structure F Khose l inks po int away from tree l eaves and toward tree roots, the concept of

environment can be defined as follows. An env ironment E in F is any possibly emp ty se que nce of ele ments of F,

E = <E(1),E(2). .. . ,E(n)> with n > 0, which satisfies the following conditions: E(n) has a nu l l link, and for

l<i<n the link of E(i) points t;E(i+1) . The forest structure has exactly one emp ty env ironment : the empty

s;quence obtained by taking n=0. The first element E(1) and the last element E(n) of a non- empt y env ironment

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 006 of 043

E in F are called the top and bottom elements of E, respectively. Env ironments with in F are considered to be
designated by mono records as follows. The mono record null designa t es the empty env ironment. If Pis a
pointer mono record which points to an element R of F, then P designates the enyironment within F whose top
reco rd is R.

2.2.0. Access Environments

Access environment are associated with label mono records and virtual processors as fo l lows. Let L be e ither
an instruction label or a contour label and let EP be the environment pointer of L. If EP is null , t hen the
access environment associated with Lis the empty environment. If EP is a pointer which points to an
execution contour fC, then the access environment associated with L is the one whose top e lement is EC. If n
is a virtual processor having instruction label L, then the access env ironment associated with n is the access
environment associated with L.

2.2.1. Program Environments

Program environments are associated with label mono records, vi r tua l processors , and access environm ents as
follows . Let L be a contour label and let CP be the contou r pointer of L; the program env ir onmen t associated
with Lis th e one designated by CP. Let L be an instruction l abel and le t EP be th e environment po inter of
the instruct ion record (in) to which the instruct ion pointer of L nece ssar ily points; the program environmen t
associated w dh L is the one designated by EP. Let n be a virtua l pr ocessor having instruct ion label L; the
program environment associated with n is the one associated with L. Let E be an access environment. If E is
empty, then the program environment associated withE is emp ty . If E is non -null and if AP is th e antecedent
pointer of the top execution contour in E, then the program environment assoc iat ed wi th E is the one whose top
element is the program contou r which is necessarily pointed to be AP.

2.2.2. Stack Environments

Stack environments are associated with virtual processors as follows . Let n be a virtual processor and let SP
be the stack pointer of n. If SP is null, then the stack environment assoc iat ed with n is emp ty. If SP is a
pointer which points to a stack record SR, then the stack environment assoc ia ted wi th n is the one whose top
stack record is SR .

Each virtual processor n in the stack skeleton effect ively has assoc iate d with it a single conce pt ual stack CS
which can hold arbitrarily many mono records and whose sequence of contained mono records, in top down order ,
can be modified as follows. Let SE be the stack env i ronment of n. If SE is empty, then the sequence of mo no
records in CS is empty. But suppose that SE = <SR (1), SR(2), .. . ,SR(n)> , 11ith n>1. Then the sequence of mo no
records in CS equals the concatenat ion of t he sequence of mono records, in top down order, contained in t he
successive stack records SR(1), SR(2). ... , SR(n) of SE. \olhile it is convenient to th ink in t erms of the
unbounded conceptual stack CS, in practice poly records must be a l loca ted in fixed s izes so that the
conceptual stack CS must be implemented as a linked stack of stack re cords.

2.3. Record Retention and Reference Counts

The contour model incorporates the following pr inc ip le of poly record retention: a poly record R in the
execu t ion component of a computation must be retained - that is, no t deallocated - if either R is an awake
virtual processor or R is pointed to by (pointer portion of) a (sub)po inter 11 hich is a subrecord of some poly
reco rd other than R which must itself be retained.

Th e principle of poly record retention is upheld in CMA by the re ference count mechan ism. Ea ch act of poly
record allocation is performed by microcode on behalf of some awake virtual processor; the microco de a l locat es
the poly record, constructs one pointer to the poly record, del ivers th e po inter t o th e virtual pr oc essor, and
sets the reference count of the poly record to 1 to reflect the one pointer . Thereafter, each co nstruc tion or
destruction of a (sub)pointer whose po inter value po ints to t he poly record is accompan ied by an
incrementat ion or decrementation of the reference count of the poly rec ord, performe d au tomat ical ly by
microcode. A poly record becomes a candidate fo r dea llocation only when it s reference co un t drops to zero.
Three observations are in order. First, maintenance of reference counts requir es implic it extra memory
accesses. Second, not all deallocations allowed by the pri nc iple of retention are necessarily triggered by
reference counts dropping to zero : garbage collect ion is generally also required . Third, memory allocation
and dea llocat ion mechanisms are beyond the scope of t his repo rt .

3. The Contour Hodel Assembly Language CMAL

The Contour Model Arch i tecture CMA is someKhat unconven tional in emp loy ing full tagging of bo th poly records
and mo no records and in automatically supporting the pr inc ip le of retent ion. By contrast, CMA provides a
rather conventional stack-oriented macro level programming language , t he Conto ur Model Assembly Language CMAL.
The purpose of this sect ion is to detail the CMAL instruct ion repertoire, giving for many instruct io ns
before/after picture pa.irs_ to show graphically the net effects of instruct ion executi ons . While the

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 007 of 043

possibilities of underflow and overflow of virtual processor stacks must be checked for in the microcode
realizations of many instructions, those possibilities are ignored in th is report .

Throughout this sect ion I let n be the virtual processor execut ing t he instruct ion speci fied •. let be th e
instruction record containing the instruction, and let S be the stack record pointed to by the stack pointe r
n.sp of n.

3.0. The CMA Instruction Cycle

As is usual, the CMA instruction cycle consists of three successive phases: instruction fetch, ins t ruction
pointer increment, and instruction execution. · The instruction is fetched to an instruction register IR , wh ich
is necessarily part of the processing unit housing the virtual processor n but is no t considered part of n
ltse l f since its content need never be saved with n for later restoration when n is removed from the
processing unit . The bit lengths of individual machine instructions, a l though unspecified in t h is report, are
intended to vary Mith the instruction in a manner partially dependent on the expected frequency of occurrence
in normal coding; hence the amount by which the instruct ion poin te r is inc rement ed depends on t he instruct ion
being fetched . Except for th is minor complication , the first two pha ses are straightforward; hence
de scriptions are given be loH for only the execution phases, the f irst two phases being assumed a lready
completed.

3.1. Data Movement BetMeen the Virtual Processor Stack and Registers

The virtual processor n has 16 Harking registers I 5 special reg isters I and t he stack s. Th e 16 Harking
registers are denoted, in hexadecimal notation : R0 = n.e, R1 = n.1, .. . I RE = A.E, and RF = n .F. The 5
special reg isters are: n . lab = n.-1, n.sp = n.-2 , n . dp = n.-3, n.pid = n.-4, n.ref = n.-5. The parts of n. lab
Hh ich hold the instruct ion subpo inter and the env ironment po inte r are regarded as pseudo registers, are
denoted by n . ip and n.ep, are called the instruct i on po inter reg ister and environment pointer reg ister of n,
and may be accessed by using special instructions. Th e stack poi nter n.sp points to the stackS, the
processor identity pointer n.pid points to n itself, the instruction poin ter n. i p po i nts into t he instruction
record I immediately beyond the instruction just fet che d, and the environment po inter n.ep des igna t es t he
current access environment of n. The display pointer n .dp either i s null or is a poi nter poin ti ng to a vect or
poly record DV called the display vector of n; when present, the display vector DV contains (sub)pointers
poi nting (in)to the execution contours in the access environment of n which n can utili ze through special
di splay instructions to gain access to the subrecords of those execution contours. All mov ements of mo no
records within the space composed of the 16 working registers , the 5 spec ia l registers, and t he stack S e ither
take place "i thin S itself or take place between S and some set of registers: these cases are t r ea ted
separately below.

3.1.0. Data Movement Hithin the Virtual Processor Stack

Execution of these instructions affects only mono records near the top of S.

00 nop no-opera tion
Execution of this instruct i on has a vacuous effect.

01 pop

I:
BEFORE

Execution of this instruction pops the top record from S.

02 dup

BEFORE
Execution of this instruction dupl icates the top record of S.

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page ll06 of ll'l3

03 SNP SHap

I: I:
BEFORE AFTER

Execution of this instruction interchanges the top tHo records of S.

04 cab

I~ I:
BEFORE AFTER

Execution of this instruction permutes the top three records of S so as to br ing the third record to t he t op
of S.

05 bca

I~ I:
BEFORE AFTER

Execution of this instruction permutes the top three records of S so as to place the top record beloH the next
t Ho records.

06 psh

psh· R:
t

n. ip

BEFORE

psh; R;
t

n. ip

AFTER

push constant

I:
This instruction must be fol loHed in I by some mon o r ecord R. Executi on of th is instruction pushes a copy of
R onto Sand increments n. ip by an amount equa l t o the byte length of R.

3.1 . 1. Data Movement BetNeen Harking Registers and the Stack

The contents of Harking registers can be saved to the stack S or be restored from the stack S, either singly
or in sets designated by register selectors. When a set of registers selected by a r egister selector M is
saved to the stack, the selector M is pushed on t op of the selected reg ister contents to be available for
controlling the later restoration of saved regis t er contents t o the same selected reg isters. Prov ision is
also made for one virtual processor to cause the saving of a selected set of another virtual processor's
Hark ing reg i sters.

00 sav Rn
Rn
I a

BEFORE

Rn
I a

save register Rn, 0<n<16

I:
AFTER

Execut ion of the n-th one of these ins t r uctions, 0~n < 16, pushes onto S a copy of the content of register Rn.

COHTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE

01 res Rn
Rn
I a

I:
BEFORE

22 Jun 89 Page 009 of 043

restore register Rn, 0<n<16
Rn
I b · I

AFTER
Execution of the n-th one of these instructions, 0~n<16, places into reister Rn a copy of the top record of S
and pops that top rrcord from S.

02 xch Rn
Rn
I a

BEFORE

exchange register Rn, 0~n<16

Rn
I b

AFTER
Execution of the n-th one .of these instructions, 0~n<16, exchanges the contents of register Rn and the top
record of S.

03 sav save selected registers
The top record of S must be a register selector M. Execution of th is instruction comprises; first, M is
popped from S to a micro register; second, for 16>i>0 if M. i=1 then save Ri is effected; third, M is pushed
back onto S.

b lmsk 000A

a It 000F R1 a R1

R3 R3 b

BEFORE AFTER
A specific example of the execution of this instruction lS illustrated above , Kith the 16-bit value of the
register selector M expressed as four hexadecimal digits.

04 res restore selected registers
The top record of S must be a register selector M. Execution of this instruction comprises; first, M is
popped from S to a microregister; second, for 16>i~0 if M.i=1 then res Ri is effected . M is discarded rather
than replaced onto S.

R1 a R1 c

R3 b R3 d

BEFORE AFTER
A specific example of the execution of this instruction lS illustrated above, with the 16-bit value of the
register selector M expressed as four hexadecimal digits.

05 tale save save selected registers of another virtual processor
The top record of S must be a pointer P pointing to a virtual processor IT' Kh ich is asleep and Kh ich has a
stack record S'; the second record of S must be a register selector M. Execution of this instruct ion
comprises : first, P is popped from S to a microregister to give IT access to IT ' ; second, a copy of IT' .sp is
placed into a microregister to give IT access to S'; third, M is popped from S to a mi croregister; fo urth, for
16>i~0 if M. i= 1 then a copy of the content of the reg ister IT'. i of IT' is pushed onto S'; fifth, H is pushed
onto S'. The po int er P is discarded. ·

IT'

'--------....Js. --It r· 000A
a I IT' . 1

b I IT ' . 3

lab s

a I IT' . 1

b lw.3 I Is
1----;--:-----i ~ p t~ .

lab msk 000A
~--~~----~ ~~~~----------~

BEFORE AFTER

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 010 of 043

A specdic example of the execution of this instruction lS illustrated above, with the 16-bit value of the
register selector expressed as four hexadecimal digits.

06 clr Rn clear register Rn, 0<n<16
Execution of the n-th one of these instructions, 0~n<16, places null into Rn.

07 clr clear selected registers
The top record of S must be a register selector H. Execution of this instruction comprises: first, M lS

popped from S to a micro register; second, for 16>i>0 if H.i=1 then nul l is placed into register Ri. M is
discarded.

R1 a R1 null

R3 b lmsk 000A R3 null

BEFORE AFTER
A specific example of the execution of this instruction is il lustrated above, with the 16-bit value of t he
reg is te r selector M expressed as four hexadecimal digits.

3.1.2. Data Movement Between Special Registers and the Stack

The contents of certain special registers and pseodo registers can individually be saved to the stack S or
restored from the stack S.

00 xch sp exchange stack pointer

n n
~~

bd .__ _______ __,s

S'
~----------------~ sp

BEFORE AFTER
The top record of S must be a pointer P Mh ich points to a stack record S' whose reference count is 1.
Execution of this inst ruct ion: copies the stack pointer IT.sp to the stack pointer subrecord S' .sp, and pops P
from s to the stack pointer register n.sp.

01 rev sp revert stack pointer

n n

BEFORE AFTER
The stack pointer subreco rd S.sp must be a pointer P which points to a stack record S' whose reference count
is 1. Execution of this ins tructio n copies the stack pointer subrecord S.sp to the stack pointer reg ister
n. sp .

02 xch dp exchange display pointer

n. dp R n.dp lptr IJ I
DV ~----~~ ~~===============~ DV

I I r----, 1 r:P....:.:tr'---------------1
L---~~~ ~a~--------------~

BEFORE AFTER
The top record of S must be a pointer P wh ich points to a vector record DV whose reference count is 1.
Execu t ion of this ins truction: pops P from S to a microregister, pushes a copy of the content of the disp lay
pointer register IT.dp onto S, and places the pointer P into the display pointer register IT.dp .

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 011 of 043

03 res dp restore display pointer

n. dp n.dp lptr IJ
DV .-----,, ria--------------~ DV

I I I. ~------. r~p_;t:,:,.r ________ -1·

L---~~~~-a~--------~
BEFORE AFTER

The top record of S must be a pointer P which points to a vector record DV whose reference count lS 1.

Execution of this instruction: pops the pointer P from S to the display pointer register n.dp.

0'1 sav pld save virtual processor identity

n
~ j ~ ~~t..:a:__ ________J

cili:J
lab lab

BEFORE AFTER
Exe cution of this instruct ion pushes onto S a copy of the content of the processor identity register n. p id,

namely a pointer ton itself.

05 xch ip

n

BEFORE

I
* b:

n

exchange instruction pointer

~=su~b=pt=r====~------d ~~,

i~ I ep I .!..I a...%~-----:-)L: __ _

AFTER
The top record of S must be a subpo inter P which points to an instruct ion with in the current instruct ion

r ecord I; the instruction subpointer n.ip, already incremented, also points to an instruction within I.

Execution of this instruction exchanges the two subpointers P and n. ip .

06 res tp restore instruction pointer

n n

BEFORE AFTER
The t op rec ord of S must be a subpo inter P which points to an instruct ion "i thin the current instruct ion

record I. Execution of this instruction . pops the subpointer P from S to the instruction pointer register

n. ip.

07 sav ep save environment pointer

n n

~~
~I ~~~~~p=--==--==--==--==--==--==--==--=~~

BEFORE AFTER
The top re cord of S must be a subpo inter P which points to an instruct ion "ith in the current instruct ion

record I . Execution of this instruct ion pops t he subpo inter P from S to the instruct ion pointer register

n. ip.

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 012 of 043

3.2. Scaler Data Manteura-fion Instructions

:~e describe in this sect ion some of the instruct ions which produce a single output sealer mono record fro m
zero ·or more input mono records, both the input and output mono records being located at the top of the stack
S. In executing one of these instructions on behalf of IT, the microcoded processing unit takes the following
steps: first, an instruction-dependent number (the degree of the instruction) of input mono records are popped
from Sand placed into microregisters; second, a single output scaler mono record is produced from the input
records and placed into a microregister; third , the output record is pushed onto the stack S. Nor mal
execut ion of one of these instructions results in an output record having a tag specific to the instruc tion,
and may require conditions on at least the tags if not the values of the input records as well. For
s implicity in this report, we shall asume that all abnormal executions of these instruct ions result in th e
production of null as the output record . In the following subsections we specify the normal execution of eac h
instruction by giving the normal tag for the output record, the degree of the instruction, any conditions
requ ired of input records, and a recipe for construction of the value, val U, of the output record U from the
inpu t records T (the top of stack record) and N (the next to top of stack record). The normal tag for th e
outpu t record and the degree of the instruction are generally incorporated into the subsection headings.

3.2. 0. Hull Producing Instructions

3.2.0.0 . Degree 0 Null Producing Instructions

20 mak null
This instruction LS equivalent to the combination "psh; null" .

3. 2.1. Tag Producing Instructions

3.2. 1.0. Degree 0 Tag Producing Instructions

00 mak tag mmm
-mmm E <type mo no>

mmm

BEFORE AFTER
Ex ecution of one of these instructions pushes onto San output record U whose tag is "t ag " and whose value ts
th e mono tag "mmm".

01 mak tag vp

I tag vp ne11

BEFORE AFTER
Execution of one of these instructions pushes onto S an output record U whose tag is "t ag" and 11hose value 1s
the poly tag "vp" with the state bits set to "new".

02 imm mak tag ppp

imm mak tag ppp; int len;
t

n. ip

BEFORE

ltas

imm mak

ppp int len

AFTER

vp * ppp E <type poly>

tas PPPi int len;
t

n. ip

Thi s instruction must be followed in I by an integer mono record having a non-negat ive value "len". Execution
oi thi s instruct ion pushes onto S an output record U whose tag is "tag" and whose value is the poly tag "ppp
int len" .

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 013 of 043

3.2.1.1. Degree Tag Producing Instructions

00 mak tag ppp vp * ppp c <type poly>

lint len I tag PPP int len

BEFORE AFTER
The top record T of S must be an integer mono record having a non-negative value " len" . Execut ion of this
instruction pops T from S and pushes onto S an output record U Hhose tag is "tag" and Hhose value is the poly
tag "ppp int len ".

01 tak tag

lmmm val mmm

BEFORE AFTER
The top record T of S may be an arbitrary mono record . Execution of this instruction pops T fro m S and pushes
onto S an output mono record U Hhose tag is "tag" and Hhose value is the tag "mmm" of T.

02 ind tak tag

hl(-s~ub~)~p~tr-----------41~R ltag rrr R

BEFORE AFTER
The top record T of S must be either a pointer to a poly record R or a subpointer to mono subrecord (not a
byte subrecord) R of some poly record. In either case, execution of this instruction pops T fro m S and pushes
onto S an output record U Hhose tag is "tag" and Hhose value is the tag "rrr" of the mono or poly record R.

3.2.2. Logical Producing Instructions

3.2.2.0. Degree 0 Logical Producing Instructions

00 mak false
This instruction lS equivalent to the combination "psh; log f".

01 mak true
This instruction lS equivalent to the combination "psh; log t" .

3.2.2. 1. Degree Logical Producing Instructions

00 not
T must be a log ical mono record; val U = not (val T).

3.2.2.2. Degree 2 Logical Producing Instructions

00 XXX xxx c {and,or,xor,nand,nor, . .. }
Both N and T must be logical mono records; val U = (val N) xxx (val T).

3.2.2.2.0. Degree 2 Arithmetic Relational Instructions

For each of these instructions both N and T must be integer mono records, Hhile the normal output record lS a
logical mono record.

00 gt greater than
If (val N) > (val T) then U = log t otherHise, U = log f.

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 014 of 043

01 ge --- - greater than or equa l to
If (val N) ~(val T) then U = Log t otherKise, U = Log f .

02 le Less than or equal to
If (val N) .5. (val T) then U = Log t otherKise, U = log f.

03 lt less than
If (val N) < (val T) then U = log t otherKise, U = log f .

04 eq equal to
I f (val N) = (val T) then_~= log t otherKise, U = log f .

05 ne not equal to
I f (val N) = (val T) then U = Log f otherKise, U = Log t.

3.2.2.2.1 . Degree 2 General Relational Instructions

00 eq
N and T may be mono records of any types .
otherwise, U = Log f.

equaL to
If N and T are identicaL ln both tag and vaLue the n U = Log t ;

01 ne
N and T may be mono records of any types .
othe rw ise, U = log t.

not equaL to
If N and T are identical ln both tag and value then U = log f ;

02 ind eq indirect equal to
Either Nand T must both be pointer mono records pointing to po ly records a and S or else Nand T must both be
subpointer mono records pointing either to mono subrecords a and S or to by t e subrecords a and S of arbitrary
poly records. I f- a- anaSare identical - as complete poly records , as mono records, or as single bytes -
then U = log t ; otherwise, U = log f .

03 ind ne indirec t no t equal to
Either N and T must both be pointer mo no records pointing to po ly records a and S or else N and T must both be
subpointer mono recor~s-Jt~iQt ing either to mono subrecords a and S or to byte subrecords a and S of ar bitrary
po Ly records. If a and S are identical - as complete poly records , as mo no records, or as single bytes -
then U = Log f ; otherKise, U = log t .

3.2.3. Register Selector Producing Instructions

3.2.3.0. Degree 0 Register Selector Producing Instructions

00 mask none se lec t no register s
This instruction is equivalent to the combination "psh; msk 0000",

01 mask all select al l registers
This instruction lS equivalent to the combination "psh; msk FFFF" .

3.2.3.1. Degree Register Selector Producing Instructions

00 not complemen t
T mu st be a reg iste r selector ; val U =not (val T) (the t's complement).

3.2.3.2. Degree 2 Register Selector Producing Instructions

00 XXX ----

N and T must both be register selectors; val U
xxx t {and,or,xor,nand,nor, . . . }

= (val N) xxx (val T) (each bit).

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 015 of 043

3.2. 4. Integer Producing Instructions

3.2.4 .0. Degree 0 Integer Producing Instructions

00 mak zero mak e the in teger 0
This instruction lS equivalent to the combination "psh : int 0" .

01 mak one make the integer 1

This instruction lS equivalent to the combination "psh; int 1" .

02 tak stk len take length of self stack record
The output record U lS a copy of the integer length subrecord of t he tag of S.

03 tak stk tos take top of stack index of se lf stack record
Exec ution of this instruction pushes onto S an output record U Khich is a copy of the top of stack index of S
as it Mas prior to the push.

3.2.4.1 Degree Integer Producing Instructions

00 not comp lem ent
T must be an integer mono record; val U = not (val T) (the l's complement).

01 neg negative
T must be an integer mo no record; val U = - (val T).

02 abs absolute value
T must be an integer mono record; val U = abs (val T).

03 tak len take length of poly record
T must be a pointer mono record pointing to some poly record R. The output record U is a copy of the integer
length subrecord of the tag of R unless R is a virtual processor, in Mh ich case the output record U is the
integer mo no record " int 16" .

04 tak ref
T must be a pointer mono record pointing to some poly record R.
reference count subrecord of R.

take reference count of po ly record
The output record U is a copy of the integer

05 tak tos take top of stack index of stack record
T must be a pointer mono record pointing to some stack record R different from S. The output record U is a
copy of the integer top of stack subrecord of R.

06 tela tak stk len take length of tele stack record
T must be a PO inter mono record pointing to some virtual processor n· Mh ich is d ifferent from n and has a
stack record S'. The output record U is a copy of the integer length subrecord of the tag of S'.

07 tale tak stk tos take top of stack index of tele stack record
T must be a pointer mono record pointing to some virtual processor n' Mh ich is different from n and has a

stack record 5'. The output record U is a copy of the integer top of stack subrecord of the tag of S'.

3.2. 4.2. Degree 2 Integer Producing Instructions

For all of these instructions, both Nand T must be integer mono records.

00 xxx xxx E {and , or, xor, nand, nor, ...)
The values of N and T are treated as bits strings; val U = (val N) xxx (val T) (each bit).

01 add
val U = (val N) + (val T).

02 sub subtract
val U =(val N)- (val T).

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 016 of 043

03 mpy mul tip ly

val U = (val N) x (val T) .

04 intdiv integer divide

T R
N a

BEFORE AFTER

This instruct ion is non-standard ln that its normal execution produces ho output records rather than just
one. The value of T must be non-zero. Execution of this instruction pops both T and N from S to
microregisters, pushes -on-to S a quotient integer mono record a, and then pushes onto S a r emainder integerrrr
mono record R. The values of a and R are uniquely determined by the fo llo wing two cond it ions: 0 ~ (va l R) <
(abs (val T)) and val N = ((val T) x (val a)) + (val R) .

05 quot integer div ision quot ie nt
The value ofT must be non-zero . This instruction is equivalent to thl! comb ination " intdiv; pop" , and i s a
standard instruction producing only one output record.

06 rem int eger divis io n remainder
The value of T must be non-zero. This instruction is equivalent to the comb ination " intdiv; swp; pop" , and is
a standard instruction producing only one output record .

3.3. Record Allocation

Only poly records can be allocated; mono records occur only as subreco rds of poly reco rds . Existing po ly
records can be duplicated and new poly records can be freshly al loc ated . Al l poly record allocat ions produce
records in the execution-component. New poly records are initial ize d dur in g allocation according to the ir
types as follows. The state of a newly allocated virtual processor is new. The length of all virt ual
processors is 16, and hence the tag of a virtual processor does not incorporate a length subrecord. The
length of a poly record which is not a virtual processor must be supplied as an operand for the al locate
instruct ion, is incorporated into the tag of the poly record, and does not change dur ing the lifet ime of t he
poly record . Allocati-on--of a poly record produces exactly one pointer to that poly record, and sets the
reference count of the poly record to 1 to reflect the existence of t h is one pointer. Each character of a new
text record is set to null. The ep and all code bytes of a new instruct ion record are set to null. The sp
and all value bytes of a new stack record are set to null; the tos subrecord is set equal to the length
subrecord to register- the-emptiness of the new stack record. All non-special subrecords of a new vector
record are set to null. The ord, tag, ip, ep, and all non-special subrecords of a new program contour are set
to null. The dsp, sp, ap, ep, and all non-special subrecords of a new execution contour are set tu nu ll. The
pid subrecord of a new virtual processor is set to be a pointe8.to the new v i rtual processor; th i s subrecord
of the virtual proces-sol'---does not change during the lifetime of the virtua l processor and i s never ref lected
in the reference count of the virtual processor. The dp, sp, lab, and all 16 wor king registers of a new
virtual processor are set to null. The state of a virtual processor can be awake or asleep only if the labe l
register of the virtual processor contains an instruction label.

00 get stk get a new stack record

n n
L-----------------~

S'

S'. sp = null
· S'. l en = int n
S'. tos = int n
S'. ref = int 1

get get stk ; int n

BEFORE AFTER
This instruction must be followed in I by an integer mono record N = int n ~hose va lu e par t n i s non-negati ve.
The purpose of this instruct ion is to perm it n to acquire an empty new stack record S' whose length i s the
program constant n, regardless of whether or not n already has a stack. Execution of this i nstruction fetches
a copy of N from I using the instruction pointer n. ip, increments n. ip by an amount equal to the byte length
of N, allocates a new stacl< record S' whose length subrecord is a copy of N, and places a pointer to S' into

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 017 of 0'13

the stack pointer register n.sp.

01 xch stk exchange s tack record

n n
~--------------~5 1------.------'' s'

J.,

~----------------~
s

xch xch

BEFORE AFTER
This instruction must be followed Ln I by an integer mono record N = tnt n whose value part n is non-ne gat ive.
The purpose of this instruction is to permit n, upon entry into a new program module, to exchange to a new
empty stack record S' whose length is the program constant n, and which is automatica lly linke7 to ·the
previous stack record S to perm it later stack revers ion back to S upon modul e exit. Execution of this
instruction fetches a copy of N from I using the instruction pointer n. ip , increments n.i p by an amoun t equal
to the byte length of N, allocates a new stack record S' whose length subrecord is a copy of N, places a copy
of n' .sp into the stack pointer subrecord s· .sp of s· . and places a pointer to s· into the stack pointer
register n. sp.

02 sav stk

n

sav msk mmmm __

EC

lsp

BEFORE

save duplicat e of stack record with selected reg isters

n

sav stk; msk mmmm

EC

lsp

s·
rm-s~k--m-mm-m------------~

saved
re s
a

AFTER
This instruction must be followed in I by a selector M = msk mmmm; the environment pointer n.ep of n must be a
pointer pointing to some execution contour EC . The purpose of this instruction is to permit n, upon entry
into a contour module PC, to preserve via the stack pointer subrecord EC.sp for possible later use by a leap
instruction an exact duplicate of S' of its stack record S together with copies of registers specified to be
fixed during execution of PC. Execution of this instruction fetches a copy of M from I using the instruction
pointer n. ip, increments n. ip by an amount equal to the byte length of M, alloca t es an exact dup lica te S' of
S, places a pointer to S' into EC.sp via the environment pointer n.ep, · performs relative to S' the register
saving actions of sav , and pushes a copy of M onto S' .

03 alocopy allocate copy of poly record

1-l p-:-t-r --------------;1 ~a I p p p •••.. . •..] ~...,..---------il a Ieee]
ptr -~
U:....:..:.------1 R I PPP " " " " . J

BEFORE AFTER
The top record T of S must be a pointer to some poly record a. Execution of this instruct ion pops T from S to
a m icroreg ister, alLocates a poly record R which is an exact copy of the record a with the two except ions
noted below, and pushes onto Sa pointer to the duplicate record R. Exceptions: (1) the reference count of R
is set to 1; (2) if a is a virtual processor, then the state of R is set to naN, R. p id is set to point to R
rather than to a, and both R.dp and R.sp are set to null .

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 018 of 0'13

04 aloe vp alloca t e virtual processor
Execution of this instruction allocates a virtual processor record Tl' , sets the state of Tl' to neM, sets the
reference count of n' to 1, sets Tl'. p id to point to Tl', sets al l other registers of Tl' to null, and pushes
onto S a pointer to Tl'.

05 imm aloe ppp

imm a loc ppp; int n
t

rr. ip

BEFORE

immediate allocate poly record, vp * ppp E <type poly>

imm a loc ppp; int n

AFTER

t
rr. i P

This instruction must be follwed in I by an integer mono record N = int n whose value part n is non-negative.
Execution of this instruction fetches a copy of N from I using the instruction pointer Tl. ip, increments Tl . ip
by an amount equal to the byte length of N, allocates and properly in i tializes a new poly record R of type PPP

whose length subrecord is a copy of N, and pushes onto S a pointer to the record R.

06 aloe ppp al locate poly record, vp * ppp E <type poly>

I int n 1-l p....,..t-r ---------ll ~I ~PP int n ...]

BEFORE AFTER
The top record T of S must be an integer mono record T = int n whose value part n l S non-negative. Execution
of this instruction pops T from S to a micro register, allocates and properly initializes a new poly record R
of type ppp whose length subrecord is a copy ofT, and pushes onto Sa pointer to the record R.

07 aloe allocate poly record

I tag eee .· I ~-I e....,..t-r ---------ll~ I ~ee]

BEFORE AFTER
The top record T of S must be a tag record whose value part is a poly record tag P; if P is a virtua l
processor tag then the state of Pis nBM. Execution of this instruction pops T from S to a micro register,
allocates and properly initializes a new poly record R whose tag is a copy of the tag P, and pushes onto S a
pointer to the record R.

3.'1. Pointer and Subpointer Operations: Selection and Index Modification

The instructions presented in this section capture most of the many address mod ification mechanisms found in
contemporary architectures. Automatic indirection is purpose ly not incorporated into the memory reference
instructions of CMAL; instead, intended access paths must be expl icitly coded as CMAL instruction sequences.

The following types of operations involving pointers and subpointers can be performed using the instructions
described in this section. A break-subpointer instruction breaks apart a subpointer into its two constituent
parts: a pointer and an integer index. Six two-argument select instruct ions construct a subpo inter from a
pointer and an integer index. Six three-argument modify-then-select instructions construct a subpointer from
a pointer and a register-resident integer index after applying an integer modification to the index, whi le six
three-argument select-then-modify instructions construct a subpointer fro m a pointer and a register-resident
integer index before applying an integer modification to the index. Three two - argument modify-then-select
instructions save a copy of a register-resident subpointer to the stack S after applying an integer
modification to the index portion of the subpointer, while three two-argument select-then-modify instructions
save a copy of a register-resident subpo inter to the stack S before applying an integer modification to the
index portion of the subpointer. Finally, six two-argument modify instruct ions simply app ly an integer
modification to the index portion of a subpoint~r which may be in a register or on the stack S.

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 019 of 043

3.4.0. The Break-Subpointer Instruction

00 brk subptr break subpointer

t ~in::-:-t-;:,x=-------iiJ I R tl
ptr BR . lsubptr @R x

R
I I

x-th subrecord x-th subrecord

BEFORE AF TER
The top record T of S must be a subpointer, the tNo constituent parts of Nhose value are: the value part @R of
a pointer P = ptr @R Mh ich points to some poly record R, and the value part x of an integer mo no record X =
int x: the subpointer r· thus points to the x-th subrecord of R. Execution of this instruct ion pops T fro m S
to .a microregister, constructs from T and pushes onto S the po inter mono record P, and then constructs fro m T
and pushes onto S the integer mono record X.

3.4. 1. The TNo-Argument Pointer Selection Instructions

Each of the six select instructions requires tNo input mono records: first, a pointer P = ptr @R to some poly
re cord R; second, an integer index X = int x. The pointer P may be on the stack S or may be in some wor king
register Ri, 0.s_i<16. The index X may be an immediate operand in the instruct ion, may be an the stack S, or
ma y be in some ~orking reister Rj, 0<j<16. Inputs ~hich are on the stackS are deno ted in the instruc tion by
"*": stack inputs are popped from the stack prior to format ion of the output mono record . If X is an
immediate operand then only i ts value x occurs Nithin the instruct ion, coded as a short 2's-complement field.
Each select instruction pushes onto the stack S as its single output mono record the subpointer Q = subptr @R
x ~hich points to the x-th subrecord of the poly record R.

00 sal *,x p on stack, X immedia te

R R

Plptr
I

alsubptr
I I

t t
x-th subrecord

BEFORE AFTER

01 sal *·* p on stack~ X on stack

I int
R R

X I
alsubptr

I I
P:ptr t t

x-th subrecord

BEFORE AFTER
The pointer P must be belo~ the index X, as sho~n: compare "brk subptr" , 3.4.0.00.

02 sal *,Rj P on stack, X ln Rj, 0.s_j<16

Rj
alsubptr

I

x-th subrecorJ

I tnt x
Rj

lint x

L---------~>~1 ------------~
R

BEFORE AFTER

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE

03 sel Ri,x

Ri R
Plptr ----------~1~ ------~

BEFORE

04 se l Ri. *

X I int x

Ri R
Plptr ----------~~' ------~

BEFORE

05 se l Ri,Rj

Rj
X I int x

Ri R
Plptr ----------~ ~1 ------~

BEFORE

22 Jun 89 Page 020 of 043

P ln Ri, 0~i<16, X immediate

alsubptr
I

Ri R i
Pl~e~tr----~---------~ 1~ ~r~~·

t
x-th subrecord--------------~

AFTER

P in Ri, 0~i<16, X on stack

alsubptr
I

Ri R i
Pl~p~tr----~---------~~~~1~~~

t
x-t h subrecord--------------~

alsubptr

AFTER

P ln Ri, X in Ri. 0~i,j<16

Rj
X I int x

I
Ri R i

Pl~p~tr----~---------~ri~J~~·
t

x- th subrecord--------------~

AFTER

3.4.2. The Three-Argument Pointer Selection and Index Modification Instructions

Each of the six three-argument modse l (modify- index-then-sa led-pointer) instruct ions and each of the s lX

thr ee -argume nt selmod (select-po in ter-then-modify-index) ins tructions requires three input mono records:

firs~, a pointer P = ptr @R to some poly record R; second, a register-resident integer index X= int x; third ,

an integer index modifier M = int m. The pointer P may be on the stack S or may be in some Mork ing re ister

R i, 0< i < 16 . The integer index modifier M may be an immediate operand "i thin the instruct ion, may be on the

stack- S, or may be in some Marking register Rk, 0<k<16. Inputs Mhich are on the stack S are denoted in t he

instruct ion by "*"; stack inpu t s are popped from the stack prior to format ion of the output mono record . If M

is an imme diate operand then on l':l its value m occ urs "ith in the instruct ion, coded as a short 2' s complement
field. Each modsel instruction first forms Mithin the register Rj the modified index Y = int y, in Mhich y

x+m , and then pushes onto the stack S as its single output mono record the subpo inter a = subpo inter @R y

Hhich po ints to th y-th subrecord of the poly record R. Each selmod instruction first pushes onto the stackS

as i ts sinle output mono record ~he subpointer a = subptr @R x Mhich points to the x-th subrecord of the poly

record R, and then forms Hithin the register Rj the modified index Y = int y, in Khich y = x+m .

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 021 of 043

00 modsel *,Rj,m P on stack, H imme diate

Pletr
I Rj

alsubetr
Rj r!i.t. Ylintx+m

I
R t I I

t
(x+m)-th subrecord

BEFORE AFTER

01 selmod *,Rj,m P on stack, H immediate

Pletr
I Rj

alsubetr
Rj r!i.t. Yllnt x+m

I
R

t I I
t

x-th subrecord

BEFORE AFTER

02 modsel *,Rj,* P on stack, M on stack

HI i•t M I Rj
alsubetr

Rj
p etr r! .. t. Y I int x+m

I
R

t I I
t

(x+m)-th subrecord

BEFORE AFTER

03 selmod *,Rj ,* p on stack, M on stack

+·t . I Rj
alsubetr

Rj r!i.t. Y I int x+m P ptr
I

R
t I I
t

x-th subrecord

BEFORE AFTER

0q modsel *,Rj,Rk P on stack, M in Rk, 0<k<16
Rk Rk

M I int m M lint m

Pletr
I Rj

alsubetr
Rj r!i.t. Ylint x+m

I
R

t I I
t

(x+m)-th subrecord

BEFORE AFTER

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 022 of 043

05 selmod *,Rj,Rk P on stack, H in Rk, 0~k < 16

Rk Rk
HI tnt m HI int m

Pl2tr
I Rj

alsubptr
Rj r:int. Yl int x+m

I
R

t I I
t

x-th subrecord

BEFORE AFTER

06 modsel Ri,Rj,m p in R i , 0~i < 16, H immediate

Rj
X I int x alsubptr

Rj
Yl int x+m

I
Ri R Ri R

t Plptr I Pletr I
t

(x+m)-th subrecord

BEFORE AFTER

07 selmod Rt,Rj ,m p in R i, 0~i < 16, M immed iate

Rj
X I tnt x alsubptr

Rj
Yl tnt x+m

I
R i R Ri R

t Plptr I Plptr I
t

x-th subrecord

BEFORE AFTER

08 modsel Ri,Rj,* p in R i , 0~i < 16, H on st ack

M I tnt m
Rj

X I tnt x alsubptr
Rj

Yl tnt x+m
I

Ri R Ri R
t Pl2tr I Plptr I
t

(x+m)-th subrecord

BEFORE AFTER

09 selmod Rt,Rj ,* p in R i , 0~i<16, M on stack

M I int m
Rj

X I tnt x olsubptr
Rj

Yl tnt x+m
I

Ri R Ri R t Pletr I Plptr I
t

x-th subrecord

BEFORE AFTER

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE

10 modsel Ri,Rj,Rk

Ri
Plptr

11 selmod Rt,Rj,Rk

Ri
Plptr

BEFORE

Rk
M I int m

Rj
X I int x

R

Rk
M I int m

Rj
X I int x

R
----------~~~----~

BEFORE

alsubptr

22 Jun 89 Page 023 of 043

P tn Ri, M in Rk, 0~i.k<16
Rk

M I int m
Rj

Yl int x+m
I

R i R i
Pl~e~tr----~-----------~lr-~1~,_,

t
(x+m)-th subrecord--------'

AFTER

p in Ri, M in Rk, 0~i.k<16
Rk

M I int m

alsubptr
Rj

Yl int x+m
I

Ri R t Pletr I
t

x-th subrecord

AFTER

3.4.3. The THo-Argument Subpointer Index Modification and Selection Instructions

Each of the three tHo-argument modsel (modify-subpointer-index-then-select) instructions and each of the three
tHo-argument selmod (select-then-modify-subpointer-index) instructions requ ires tHo input mono records: f irst,
a register-resident subpointer P = subptr @R x Hhich points to the x- th subrecord of some poly record R;
second, an integer index modifier M = int m. The subpoiner P must be in some Harking register Ri, 0< i<16.
The integer index modifier M may be an immediate operand in the instruction, may be on the stackS, or ;ay be
in some Harkin register Rj, 0<j<16. An input Hhich is on the stackS is denoted in the instruction by "*"; a
stack input is popped from the stack prior to format ion of t he output mono record. If M is an immediate
operand then only its value m occurs Hithin the instruction, coded as a short 2's complement field. ch modse l
instruction forms Hithin the register Ri the modified subpointer a = subptr @R y, in Hhich y = x+m and Hhich
points to the y-th subrecord of the poly record R, and then pushes onto the stack S as its single output mono
r ecord a copy of the subpointer a. Each selmod instruction first pushes onto the stack S as its single output
mono record a copy of the subpo in ter P, and then forms H ith in the register R i the modified subpo inter a =
subptr @R y, in Hhich y = x+m and Hhich points to the y-th subrecord of the poly record R.

00 modse l R i,m

I

I I
R t

t t
x-th sub-----' I
(x +m)-th subrecord----l

BEFORE

Ri
Plsubptr

I
alsubptr

I

t
t t

x-th sub-----' I
(x+m)-th subrecord----l

AFTER

Ri
alsubptr

I

M immediate

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 024 of 043

01 selmod Ri-.m M immediate

Ri
Plsubptr

Ri
Plsubptr ~ubptr

I
I

I
R

t t t I I I I
t t t t

x-th sub I x-th sub I (x+m)-th sub record (x+m)-th subrecord

BEFORE AFTER

02 modsel Ri,* H on stack

M I int m
Ri

alsubptr
Ri

Plsubptr alsubptr
I

I I I

R
t t I I I I

t t t t
x-th sub I x-th sub I (x+m)-th subrecord (x+m)-th subrecord

BEFORE AFTER

03 selmod Rl.* H on stack

M I int m
Ri

Plsubptr
Ri

Plsubptr ~ubptr
I I I

R
t t t I I I I

t t t t
x- th sub I x-th sub I (x+m)-th subrecord (x+m)-th subrecord

BEFORE AFTER

0'1 modsel Ri,Rj M in Rj , 0~) <16
Rj Rj

11 I int m 11 I int m
Ri

alsubptr
Ri

Plsubptr alsubptr
I

I I I

R
t t I I I I

t t t t
x-th sub I x-th sub I (x+m)-th subrecord (x+m)-th subrecord

BEFORE AFTER

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE

05 se lmod Ri,Rj

I

t I f
t t

x-th sub-----' I
(x+m)-th subrecord----'

BEFORE

Rj
M I int m

Ri
Plsubptr

I

22 Jun 89 Page 025 of 043

Min Rj, 0~j <16

Rj
M I int m

Ri
Plsubptr

I
~ubptr

I f t
t t

x-th sub-----' I
(x+m)-th subrecord----'

AFTER

3.4.4. The THo-Argument Subpointer Index Modification Instructions

Each of the six ho-argument modsub (modify-subpointer-index) instructions requires ho input mono records:
first, a subpointer P = subptr @R x Hhich points to the x-th subrecord of some po ly record R; second, an
integer index modifier M = int m. The subpo iner P may be on the stack S or may be in some Kork ing reg i ster
Ri, 0<i<16 . The integer index modifier M may be an immediate operand Kithin the instruction, may be on t he
stack -5, or may be in some Horkin register Rj, 0<j<16. An input Hhich is on the stack S is denoted in t he
instruct ion by "*"; stack inputs are popped from the stack prior to format ion of the output mono record. If M
is an immediate operand then only its value m occurs Hithin the instruct ion, coded as a short 2's complement
field. Each modsub instruction forms as its single output mono record the subpointer a= subptr @R y, in
which y = x+m and Khich points to the y-th subrecord of the poly record R. If P had been on the stack S then
the output record a is pushed onto S. If P had been in some Horking register Ri then the output record 0 is
placed into R i.

00 modsub *,m p on stack , M immediate

Plsubptr
I

I
alsubptr

I
I

R
t t I I I I

t t t t
x-th sub I x-th sub I (x+m)-th subrecord (x+m)-th subrecord

BEFORE AFTER

01 modsub *·* p on stack, M on stac k

+nt' alsubptr P.subptr
I

I
I

I
R

t t I I I I
t t t t

x-th sub I x-th sub I (x+m)-th subrecord (x+m)-th subrecord

BEFORE AFTER

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 026 of 043

02 modsub *,Rj p on stack, M in Rj, 0·~i< 16

Plsubl!tr
Rj

alsubl!tr
Rj

M I int m M I int m
I I

I I
R t t I I I I

t t t t
x·th sub I x-th sub I (x+m)-th subrecord (x+m)-th subrecord

BEFORE AFTER

03 modsub R i,m p in R i, 0~i<16, M immediate

Ri Ri
Plsubl!tr alsubl!tr

I
I I I

R
t t I I I I

t t t t
x-th sub I x-th sub I (x+m)-th subrecord (x+m)-th subrecord

BEFORE AFTER

04 modsub R i, * P in R i, 0~i<16, M on stack
Ri ~I int

R i
Plsubl!tr In alsubl!tr

I
I

I I
R

t t I I I I
t t t t

x-th sub I x-th sub I (x+m)·th subrecord (x+m)·th subrecord

BEFORE AFTER

05 modsub Ri.,Rj P in R i I M ln Rj I 0~i,j<16

Ri Rj R i Rj
Plsubl!tr

,_
-M I int m alsubl!tr Ml i.nt m

! I I I
R

t t I I I I
t t t t

x-th sub I x-th sub I (x+m)·th subrecord (x+m)·th subrecord

BEFORE AFTER

3.5. Disl!la~ Related Instructions

In this section Me assume that the virtual processor IT has a display vector OV; that is, the display pointer
register IT.dp contains_ a_po.inter P = ptr @QV pointing to the vector poly record OV. It is convenient to have
specialized instruct ions both to maintain the display vector and to prov ide IT direct eff icient use of the
display vector in realizing access via identifiers. We describe beloN both : one-argument display
inst ruct ions for fetching from and storing into the display vector OV, and tHo-argument display ·instruct ions
which produce subpointers pointing into execution contours pointed to by subrecords of the display vector OV.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 027 of 043

3.5.0. Display Vector Fetch Instructions

Each of the three one-argument fat dsp (fetch - from-display-vector) instructions requires one in put mono
record: an integer index X = int x. The integer index X may be an immediate operand in the instruction, may
be on the stack S, or may be in some working register Ri , 0<i<16. An input wh ich is on the stack S is denoted
in the instruct ion by "11"; a stack input is popped from -the stac k prior to formation of the output mono
record. If X is an immediate operand then only its value x occurs with in the instruct ion, co ded as a short
2's complement field. Each fet dsp instruction pushes onto the stack S ai t s single output mono record a copy
0 of the x- th subrecord OV.x of the display vector OV .

00 fet dsp x

Each of the three one - argument sto dsp (store- into-display-vector) instruct ions requires two input mono
records: first, a mono recor d P which is either null or is a (sub)pointer pointing (in)to some execution
contour; second, an integer inde x X = int x. The mono record P must be on the stack S. The intege r ind ex X
may be an immediate operand in the instruct ion, may be on the stack S, or may be in some working reg iste r Ri,
0< i< 16 . An input which is on the stack s· is denoted in the instruct ion by "II"; a stack input is popped from
the stack prior to fo r mation of the output mo no record. If X is an immediate operand then only its value x
occurs within the i nstruction, coded as a short 2' s complement field. Each sto dsp instruction stores the
input record P into the x-t h subrecord OV.x of th display vector OV .

CONTOUR MODEL ARCHITECTURE: and ASSEMBLY LANGUAGE

00 sto dsp x

lp

ov
TT. dp I Ia

t
x-th subrecord

BEFORE

01 sto dsp *

xi;•' •
ov

TT. dp I Ia
t

x- t h- s ubrecord

BEFORE

02 sto dsp Ri

lp
R i

X I int x

ov
TT. dp I Ia

t
x-th subr-e~Nl

BEFORE

22 Jun 89 Page 028 of 043

x immediate

ov
TT. dp---~ ,_1 -~~ P__.l _ __.l

t
x-th subrecord-------..J

AFTER

x on stack

ov
TT.dp----~

-I IP I I
t

x-th subrecord-------..J

AFTER

X ln R i I 0<i<16

Ri
X I int x

ov -I IP I I TT.dp----~

t
x- th subr ecord--------'

AFTER

3.5.2. Display Instructions for Accessing Into Execution Contours

Each of the nine- two-ar-gument dsp (access-via-display} instructions requires two in put mo no records: f irst, an

integer display vector- index X = int x; second, an integer execution contour index Y = int y. T~e integer _

index X (resp. Y} may be an immediate operand in the instruction, may be on the stack S, or may be in some

11orking register Ri, 0<i<16 (resp. Rj, 0<j <1 6}. An input which is on the stack S is denoted in the

instr uct ion by "*"; a stack input is popped- from the stack prior to the format i on of the output mono record.

If X (resp. Y} is an immediate operand then only its value x occurs "ith in the instruct ion, coded as a short

2's complement field~--The x-th subrecord of the display vector DV must be a pointer P = ptr @EC which points

to some execution contour EC. Each dsp instruction fetches t he po inter P from the display vecto r OV, forms

from P the subpointer Q = subptr @EC y Hhich points to the y-th subrecord of the execution contour EC, and

pushes Q onto the stack S as it s single output mono record .

00 dsp x,y X imme diate, Y immediate

al subptr
y-th subrecord y-th subrecord

EC t) I

ov p ov p

I letr I letr
t t
t__x-th subrecord t__x-th subrecord

BEFORE AFTER

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 029 of 043

01 dsp x,* X immediate, Y on stack

Yllnt ~ alsubptr
y-th subrecord y-th subrecord

EC t
EC t -) I) I I -

I I ov p DV p

I letr I letr
t t
L._x-th subrecord L._x-th subrecord

BEFORE AFTER

02 dsp x,Rj X immediate, Y in Rj. 0~j<16

Rj Rj
Y llnt ~

alsubptr
Y llnt y

y-th sub record y-th subrecord
EC

t
EC

t -) I) I I

I I ov p ov p

I letr I letr
t t
L._x-th subrecord L._x-th subrecord

BEFORE AFTER

03 dsp *,Y X on stack, Y immediate

xllnt alsubptr 11 X

y-th subrecord y-th subrecord I
EC

t
EC

t -) I) I I

I I ov p ov p

I letr I letr
t t
L._x-th subrecord L._x-th subrecord

BEFORE AFTER

04 dsp *•* X on stack, Yon stack

+·t ~ X lnt x alsubptr
y-th subrecord y-th subrecord

EC
t

EC
t -) I) I I

I I ov p ov p

I letr I letr
t t
L._x-th subrecord L-x-th subrecord

BEFORE AFTER

COHTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE

05 dsp *,Rj

06 dsp Ri,y

07 dsp Ri,*

08 dsp Ri,Rj

X I int x

Rj
Y I int y

y-th subrecord

DV

p ~~ ------~)~IE_c _t~~~

lptr
t
L-x-th

y-th subrecord

subrecord

BEFORE

R i EC
xI i:: ' -: .-~----~) r=-1 ;...;;__+t...,..· ..,..-__,

I I ptr

Y I int y

t
L-x-th

y- th subrecord

subrecord

BEFORE

R i EC
X I i:: ' : ,....~----~)1 ~ ~-+t~--.

I lptr
t
L-x-th subrecord

BEFORE

Rj
Y I int y

y-th subrecord
Ri EC

xI i:: , : ~~------~) rl ~-+t~--.
I I ptr

t
L-x-th subrecord

BEFORE

22 Jun 89 Page 030 of 0~3

X on stack, Y in Rj, 0~j < 16
Rj

lf--:--:"-------11 Y I int y
a subptr]
y-th subrecord 1

~------~)~~E~C~t~--~~ -

P I . ov
lptr

alsubptr

t
L-x-th subrecord

AFTER ·

X in Ri, 0~i<16, Y immed iate

y- th subrecord

X I~:: ' : ~~------~) I~E~C ~t~---,1-

1 lptr
t
L-x-th subrecord

AFTER

X in Ri , 0~i < 16, Y on st ack

alsubptr
y- th subrecord

X I~:: ' ; ,....~------~) I~E~C ~t~---,1-
1 lptr

t
L-x-th su brecord

AFTER

X in Ri, Yin Rj, 0~i, j <16

~--,--.,....---------ll Y I int y
a subptr]

Rj

y- th subrecord 1

X I~:: ' : ,....~----~) lr=-E~C -f-t--r---.1-
1 lptr

t
L--x-th subrecord

AFTER

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 031 of 043

3.6. Label Manipulation Instructions

There are in CMA three types of label mono records : the instruction label (i-lab), the i nstruction procedure

label (ip-lab). and the contour procedure label (cp-lab). The value of an instruction label IL is the

concatenation of an instruction po inter IP and an environment pointer EP (((ee 1.0.26); IP must be a

subpointer of non-negative index Hhich points into some instruction record I having env ironment pointer

subrecord I .ep, Hhile EP must either be null or be a pointer Hhich points to some execut ion contour EC whose

antecedent pointer subrecord EC.ap necessarily points to some program contour PC; if EP is null then l .ep must
be null, Hhile if EP is non-null and points to EC then l.ep must be non-null and must point to PC. The value

of an instruction procedure label IPL is the concatenation of an i ns t ruction pointer IP and an environment

pointer EP (see 1.0 . 27); IP must be a pointer Hhich points to some instruction record I having environment
pointer subrecord l . ep, while EP must either be null or be a pointer Hhich points to some execution con tour EC

whose antecedent pointer subrecord EC . ap necessarily points to some program contour PC ; if EP is null then

I. ep must be null, Hh ile if EP is non-null and points to EC then I. ep must be non-null and must point to PC.

The value of a conour procedure label CPL is the concatenation of a contour po in ter CP and an environment

poin ter EP (see 1.0 . 28); CP must be a pointer Hhich points to some program contour PC, Mhile EP must ei ther be

null or be a pointer Hhich points to some execution contour EC; no other conditions need be met by CP and EP.
The microcode realizations of those instructions described below Hhich construct label mono records must check

that the applicable conditions are met. CMAL contains both instructions Mhich make labels from their

constituent parts and instructions Mhich break labels into their constituent parts.

00 brk i -lab

Ill i-lab IP EP

BEFORE

break instruct ion label

AFTER
The top record of the stack S must be an instruct ion label I L whose va lue cons ish of an instruct io n pointer

I P and an environment pointer EP. Execution of this instruct ion comprises: f i rst, I L is popped fro m S to a

microregister; second; a copy of EP is pushed onto S; third, a copy of IP is pushed onto S.

01 brk ip-lab brea k instruction procedure label

IPLiip -lab IP EP

BEFORE AFTER
The top record of the stack S must be an instruct ion procedure label I PL Mhose value cons ish of an

instruct ion pointer I P and an environment pointer EP. Execution of this instruct ion comprises: fi rst, I PL lS

popped from S to a microregister ; second; a copy of EP is pushed onto S; th ird, a copy of IP is pushed onto S.

02 brk cp-lab

CPLicp-lab CP EP

BEFORE

break contour procedure labe l

AFTER
The top record of the stack S must be an contour procedure label CPL Mhose va lue consists of a contour point er
CP and an environment pointer EP. Execution of this instruct ion comprises: fi rst , CPL 1s popped f ro m S to a

microregister; second; a copy of EP is pushed onto S; third, a copy of CP is pushed onto S.

03 mak i-lab

BEFORE

lll i -lab IP EP

AFTER

make instruct ion label

The top record of the stack S must be an instruction pointer IP Hhich is a subpo inter of non-negative index,
while the next-to-top record of S must be an environment pointer EP. Execution of th i s instruction co mpr ises:

first, both IP and EP are popped from S to microregisters; second, checks are made to ensure that IP and EP

satisfy the conditions described above ; third, an instruction label IL Hhose value consists of copies of IP

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 032 of 043

and EP is formed and pushed onto S.

04 mak ip-lab make instruct ion procedure label

IPL,ip-lab IP EP

BEFORE AFTER
The top record of the stack S must be an instruct ion pointer IP which is a po inter, wh ile the next-to-top
record of S must be an environment pointer EP. Execution of this instruction comprises: first, both IP and EP
are popped from S to microregisters; second, checks are made to ensure that IP and EP satisfy the cond i tions
described above; third, an instruction procedure label IPL whose value consists of copies of IP and EP is
formed and pushed onto S.

05 mak cp-lab

BEFORE

CPL,cp-lab CP EP

AFTER

make contour procedure labe l

The top record of the stack S must be a contour pointer CP, while the next-to-top record of S must be an
environment pointer EP. Execution of this instruct ion comprises: first, both CP and EP are popped from S to
m icroreg isters; second, checks are made to ensure that CP and EP satisfy the conditions described above;
third , a contour procedure label CPL whose value consists of copies of CP and EP is formed and pushed onto S.

3.7. Data Movement Between the Virtual Processor and Memory

Only· mono records can be moved be he en the virtual processor n and memory . Each such movement of a mono
r ecord R occurs specilic.ally beheen the stack S of n and some poly record a. The fet (fetch-to-stack)
instruct ion provides for moving the mono record R from a source in the poly record a and push ing R onto the
stack S. The sto (store-from-stack) and stor (store-reverse-from-stack} instructions provide for popping t he
mono record R from the stack S and moving R to its destination with in the po ly re cord a. The source or
destination for the mono record R with in the poly record a must be designated either by a stack-res iden t
pointer P which points to a or by a stack-resident subpoi.nter P which points into a, as described be low. The
fetch instruction fet requires one stack-resident input mono record: as the top record of S, t he (sub)po inter
P. The store instruct ion sto requires ho stack-resident input mono records: f irst, as the top record of S,
the (sub}pointer P; second, as the next-to-top record of S, the mono record R. The store-reverse instruct io n
stor requires two stack-resident input mono records: first, as the top record of S, the mono record R; second,
as the next-to-top record of S, the the (sub)pointer P. Both the fetch and the store instructions pop their
input mono records_illm._the_ stack S to microregisters prior to completing the ir activit ies . Wh en t he poly
re cord a is a text, instruction, or stack record, special actions are required as described be low .

00 fet fetch and transform byte from text or instruct ion rec ord

Plsubptr Rl i.nt b
Q

t
a

I B I B

BEFORE AFTER
If the top record P· ot- the stackS is a subpointer of non-negat ive index m wh ich points into a te xt or
instruction record 0 then m must be less than the length of a and P points to some te xt byte B with in the
value part of a. Under these conditions, execution of this instruction compr ises: first, P is popped from S
to a microregister; second, an integer mono record R = int b, whose value con t ains a right-justif ied copy of B
and is left-filled "i. th 0 bits, i.s formed and pushed onto S.

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 033 of 043

00 fet fetch mono record from stack record using pointer

IR

a1

BEFORE AFTER
If the top record P of the sta'ck S is a pointer 11h ich points to a poly record a then a must be a non-empty

stack record which is not attached to any virtual processor. Under these conditions, execution of this

instruction comprises: first, Pis popped from S to a microregister; second, the top mono record R of the

stack record a is popped from a and pushed onto s.

00 fat fetch mono record using subpo inter

Plsubptr IR
a t

a
I R I R

BEFORE AFTER
If the top record P of the stackS is a subpointer of index m 11hich points into a poly record a, and if it is

not the case both that m>0 and that a is either a text record or an instruct ion record, then the following
conditions must hold: if-m<0 then m is the index of some special subrecord of a; if m>0 then m is less than

the length of a and a is not a stack record; if a is a virtual processor then a is not awake and p does not
point at either the display pointer register of a or the stack pointer register of a. Under these conditions,

the subpo inter P points to some subrecord R of a and execution of this instruct i on compr i ses: first, P is

popped from S to a microregister; second, a copy of R is pushed onto S.

01 sto

+•bptr
N int b

transform and store byte into text or instruction record

a
8

BEFORE AFTER
If the top record P of the stack S is a subpointer of non-negative index m which points into a text or

instruction record a then the follolling conditions must hold: a is in the execution component; m is less than

the length of a; P points to some byte C in the value part of a; and the next-to-top record in S must be an

integer mono record N = int b. Under these conditions, execution of this instruction comprises: first, both P

and N are popped from S to microregisters; second, the byte C within a is overwritten 11ith a byte B 11h ich is a

copy of the rightmost eight bits of the value b of N.

01 sto store mono record into stack record using poin t er

BEFORE AFTER
If the top record P of the stackS is a pointer 11h.ich points to a poly record a then the follo11ing cond i tions

must hold: a is in the execution component; a is a stack record 11hich is not attached to any virtua l
processor; the next-to-top record in S can be an arbitrary mono record R; and a i s sufficiently non-ful l that

it can accept a copy of R. Under these conditions, execution of this instruction compr ises: f irst, bo th P and

R are popped from S to microregisters; second, a copy of R is pushed onto a.

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 034 of 043

01 sto store mono record uslng subpo in ter

a
R

BEFORE . AFTER
If the top record P of the stack S is a subpo inter of index m which points into a poly record a, and that it
is not the case both that m>0 and that a is either a text record or an instruction record, then the following
conditions must hold: a is in the execution component; if m<0 then m is the index of some special subrecord of
a which is writeable (that is: not the length subrecord, not the reference subrecord, not the tos subrecord of
a stack record, and not-the p id subrecord of a virtual processor); if m>0 then m is less than the length of a
and a is not a stack record; if a is a virtual processor then a is not awake; and the nex t -to-top record in s
can be an arbitrary mono record R, except that only an instruction label can be stored into the labe l re ister
of a virtual processor. Under these conditions, execution of this instruct ion comprises: first, P and R ar e
popped from S to microregisters; second, a copy of R is stored into the m-th subrecord of a.

02 stor reverse store
This instruction lS equivalent to the combination "sNp; sto".

3.8. Control Instructions

Control instructions are used to realize the following types of control act ivities: branches from within an
instruct ion record to points with in the same instruct ion record; leap's (go to's) to sites of act i v lt y
determined by instruction labels; module entry and exit; and virtual processor state modif icat ion.

3.8.0. Branches

The CMAL representation of the instruct ion stream port ion • of an instruct ion record comprises a sequence of
CMAL instructions optionally labelled by identifier-colon pairs. The five instructions defined below provide
both for conditional and unconditional branching and for subroutine calling, to points with in the current
instruct ion record which are designated either statically by identifier-colon label pairs or dynamica lly by
previosly obtained in~t~uction labels .

00 b QL branch unconditionally to the instruction label led L
There must be a unique instrut ion T with in I which is labelled L. Execution of this instruct ion causes the
instruction pointer of n to be changed unconditionally to point to the target instruction T.

01 bt QL branch i f true to the instruction labelled L
There must be a unlque instrution T within I which is labelled L, and the top record R of the stack S must be
a logical mono record. Execution of this instruction pops R from S to a microreg ister; if R is log t then the
instruct ion PO inter of n is changed to point to T; if R is log f then t he instruct ion pointer of n is le ft
pointing to the instruction immediately following the branch .

02 bf QL branch if false to the instruction labelled L
There must be a unique instrution T within I which is labelled L, and the top record R of the stack S must be
a logical mono record. Execution of this instruction pops R from S to a microregister; if R is l og f then the
instruction pointer of n is changed to point toT; if R is log t then the instruction pointer of n is left
pointing to the instruction immediately following the branch.

03 jmp unconditiona l Jump
This instruct ion lS identical to the . res ip" instruction defined in 3. 1.2.06 .

04 j sb uncondit iona l subroutine ca l l
This instruct ion lS identical to the . xch ip . instruct ion defined liT 3. 1.2.05 .

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 035 of 043

3.8.1. Leaps

A vi rtual processor Hhich leaps or is coerced to leap (by hle leap) finds its label register loaded with a
neH instruction label Hhich may cause continuation of execution activity at a site arbitrarily remote from the
site of activity obtained just prior to the leap. Leaps must be used carefully and Hith elaborate
preparations since in general both the stack environment and the access environment of a leaping virtual
processor are changed by the leap. Since there is in essence one and only one correct stack management
strategy (as explained elseHhere), the _leap instructions beloH incorporate a straightforHard stack acquis i tion
tactic in support of that strategy; careful coding is required to provide advance preservation of an
appropriate stack record to be duplicated by the stack acquisition tactic. By contrast, display vector usages
are highly varied and hence the leap instructions beloH incorporate no display vector actions; display update
must be effected by coding at the site of the leap or tele leap instruction.

00 leap
The top record of the stack S must be an instruction label IL Hhose value consists of an instruction pointer
IP and a non-null environment pointer EP which must satisfy the folloHing conditions. IP is a sub -pointerr r of
non-ngat i ve index Hh ich points to an instuct ion H ith in some instruct ion record I Hhose environment pointer
l.ep is non-null and points to some program contour PC; the instruction pointesubrecord PC.ip points to I. EP
points to some execution contour EC Hhose antecedent pointer EC.ap points to PC. The stack pointer subrecord
EC.sp of EC is non -null and points to some stack record R Hhich has as its top record a register selector M;
beloH M in R are mono records Hhich have been saved from registers in accordance Kith the value of M.
Execution of this instruct ion comprises: first, I L is popped from S to a m icroreg ister; second, checks are
made to ensure that the above conditions are met; third, a duplicate R' of the stack record R is allocated,
the reference count of R' is set to 1, and a pointer toR' is placed into the stack pointer register n.sp of
n; fourth, the steps of res are performed; fifth, a copy of I L is placed into the instruct ion label register
n. lab of n.

5~--------------~
n n

l"' lab
IP ress

t t

L:
epj epj t

PC i PC i I i~ EC sp
I I I~

ap ap

BEFORE AFTER

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 036 of 043

01 tole leap coerce another virtual processor to leap

The top record of the stack S must be an instruction label IL whose value consists of an instruction pointer
IP and a non-null environment pointer EP which must satisfy exactly the same conditions as for the leap (see

3. 8. 1. 00). The next-to-top record of the stack S must be a pointer P to a virtual processor n• which is

necessarily distinct from nand whose state is either noN or asleep. Execution of this instruct i on comprises:

first, both IL and P are popped from S to a microregisters; second, checks are made to ensure that the above

conditions are met; third, a duplicate R' of the stack record R is allocated, the reference count of R' is set
to -1, and a pointer to R' is placed into the stack pointer register n".sp of n· ; fourth, the steps of res are

performed as though by n•, namely, the saved register contents are popped from R' to the registers of n•
rather then of n; fifth, a copy of IL is placed into the instruction label register n• .lab of n•; the state of

n' is not altered.

n.sp~

IL~~~~~------~

r----P
~~---+--,_------~

lab

epl
PC t

ap

BEFORE

t

3.8.2. Tole Display Vector Instructions

3.8.2.0. Tela Display Vector Fetch Instructions

I

IP
t

L:
epl t

PC ! I ip EC sp
I~

ap

AFTER

Each of the three one-argument tole fat dsp (tole-fetch-from-display-vector) instruct ions requ ires two input

mono records: first, a pointer P; second, an integer index X = int x. The pointer P mus t be on the stac k S

and must point to some virtual processor n' whose state is either new or as leap . The integer index X may be

an immediate operand in the instruction, may be on the stack S, or may be in some working reg ister Ri, 0~ i< 16.

An index which is on the stack S is denoted in the instruct ion by "*" ; stack inputs are popped from the stack

prior to formation of the output mono record. If X is an immediate operand then only its value x occurs

with in the instruct ion, coded as a short 2' s camp lement field . Each te le fet dsp instruct i on pushes on t o the

stack S of n as its single ouput mono record a copy Q of the x-th subrecord DV' . x of the disp l ay vector DV' of

n'.

00 tole fet dsp x

DV'
)n' .dp-----~1 Ia

'----±-t,;,..L-~

x-th subrecord--------------~

BEFORE

x immediate

~~a
I OV'
'--~) n' . dp----~ '-1 --+l.::..a -L-____JI

t
x-th subrecord--------------~

AFTER

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 037 of 043

01 tale fet dsp * x on stac k

X int x a a
p ptr

OV' OV' -
n' . dp I Ia n'. dp I I a I· I

t t
x-th subrecord x-th subrecord

BEFORE AFTER

02 tela fet dsp Ri. x ln R i . 0<i< 16

p'r
Ri

ala X I int x

OV' I OV' -
)Il' .dp I Ia)n' . dp I Ia I

t t
x-th subrecord x-th subrecord

BEFORE AFTER

3.8.2.1. Tale Disela!! Vector Store Instructions

Each of the three one-argument tela sto dsp (tela-store-into-display-vector) instructions r equ ir es three input

mono records: first, a pointer P; second , a mono record a Hh i ch e ither is either null or is a (sub)point er

pointing (in)to some execution contour ; third, an integer index X = int x. The po inte r P mu s t be on the stack

S and must point. to some virtual processor n' Hhose state i s either neN or asleep and Hhose disp lay pointe r

fT' . dp points to a display vector OV' . The mo no record a must be on the stack S. The intege r i ndex X may be

an immediate operand in the instruction, may be on the stackS, or may be in so me Hark in g reg iste r Ri, 0~i<l6.

An index Hhich is on the stackS is denoted in the instruction by"*"; stack inp uts are popped from the stac k.

I f X is an immediate operand then only its value x occurs Hithin the ins truct ion, code d as a short 2's
complement field . Each tele sto dsp instruction stores the input record a in to the x- th subrecord ov· . X of th

display vector OV' of the virtual processor IT'.

00 tela sto dsp x

L::l~lr --------~
OV'

n'. dp-----~ 1 I a
'--~t.:........l..--'

x-th subrecord--------------_J

BEFORE

x immedi ate

5~--------------~
ov·

n' . dp---~ 1.___~1 o l __ l
t

x- th subreco r d--------------_J

AFTER

CONTOUR HODEL ARCHITECTURE. and ASSEMBLY LANGUAGE 22 Jun 89 Page 038 of 043

01 tale sto dsp * x on stack

[:1::: ' ; s

OV' OV'
n·. dp I Ia n· .dp I Ia I

t t
x-th subrecord x-th subrecord

---- BEFORE AFTER

02 tele sto dsp Ri x ln R i I 0<i<16

b
Ri Ri

X I int x s X I int x

OV' OV' -
I Ia n·. dp I Ia I I IT'. dp

t t
x-th subrecord x-th sub record

- --·--
BEFORE AFTER

3.8.3. Module Entry Instructions

Module entry requires specialized instructions both for maintaining the stack and for adjo in in g neK execution
contours.

3.8.3.0. Module Entry Stack Instructions

Module entry utilizes specialized instructions both to save registers and exchange label just before entry and

to save stack and exchange stack just aHer entry. To enable the virtual processor n to coerce another

virtual processor IT ' to enter a procedure module, tele versions of the instructions to save registers and

exchange labels are provided.
_ __ L ___

00 sav save selected registers

This instruction lS defined ln 3. 1. 1. 03.

01 te le sav save selected registers of another virtual processor
This instruct ion is defined ln 3. 1. 1. 05.

02 xch lab exchange label

n

W
~5 1N

b ~--------------~
-

BEFORE AFTER
The top record N of the stack S must be an instruct ion label. By the t ime of the execution phase of this

instruct ion I the instruct ion PO inter port ion of the instruct ion label X of n has been incremented to point to

the instruct ion in I Kh ich immed lately fo lloKs the exchange label instruct ion. Execution of this instruct ion

comprises: first, N is popped from S to a microreg ister; second, X is pushed onto S; third, N i s placed into

the label reg ister n.lab .

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 039 of 043

03 tela xch lab exchange l abel of another virtual processor

~s~
,___""""-:7';....._-gu:'""'~~tr:=============~
1

_ lab
y

lab
y

(asleep)

n' r--,...........---r---,
~ L;..e_ ~s·l

(as lee p } ~X=================~
lab lab
X N

BEFORE AFT ER
The top record N of the stackS must be an instruction label, 11 hile th e next-to -top record P of the stackS
must be a pointer to another virtual processor n• "hose state is asleep, "hose stack pointer points to some
stack recordS' , and "hose label register contains some instruct ion labe l X. Execut ion of this instruction
comprises: first, Nand P are popped from S to a mic roregisters; sec ond, X is pushed onto the stack record S'
of n•; third, N is placed into the label register n· . lab of n·.
0<1 sav stk save duplicate of stack record
This instruct ion is defined ln 3.3.02.

05 xch stk . exchange s t ack
This instruct ion is defined ln 3.3.01.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 040 of 043

3. 8. 3. 1. The Executlo·ncorit'our Adjunction Instruction

The execution contour adjoin instruction is a poHerful instruct ion Hhich enables the virtual processor n,
given the cp and ep of a contour label des ignat in both a declaration program modu le M and an execut ion
environment E for its activation, to perform the folloHing operat ions as part of the action of establish ing
the structure required for an entry to be made into M, either by nor by another virtua l processor n· Hhich is
being coerced by n to enter M: allocate an execution contour of appropriate size, attach that execut ion
contour to the execution skeleton so as to effect the environment E, connect the execution contour to the
program skeleton, provide an entry instruct ion label for entry into M, and provide a po inter to the execut ion
contour to enable the transmission of parameters to the execution contour.

00 adjoin al locate and attach execution contour
The top record CP of -the stack S must be a pointe to some program contour C, Hhile the next-to-top record EP
of the stack S must-either be null or be a pointer to some execution contour. Execution of this ins t ruct io n
comprises: first, both CP and EP are popped from the stackS to microregisters; second, an execution contour 0

is allocated in accordance "ith the tag subrecord C. tag of C; third, a copy of CP is placed into the
antecedent pointer subrecord O. ap of 0; fourth, a copy of EP is placed into the environment pointer subrecord
O.ep of 0; fifth, an entry instruction . label Hhose ep is a pointer to 0 and Hhose ip is a copy of the
instruction pointer subrecord C. ip of C is pushed onto S; sixth, a pointer to 0 is pushed onto S.

ep
-2 : ip
-3 : tag

dsp
ref

ep
-2 : ip
-3 : tag

dsp
ref

c
--- -

[ptr -- --
tag con int n
int -
int -
con int -

c

ptr
tag con int n
int -
int -
con int -

ep

r----~--------------~ t '
1-

s
CP IPtr
EP eee

BEFORE

ep
r----

J t

1--

s
P[ptr

IL i-lab ptr ptr

AFTER

n-1 : null T
n

0: null 1
-1: eee ep = EP
-2: [ptr ap = CP

null sp
null dsp

J int 2
~ con int n

re f
tag

For preclslon and clarificat ion He give beloH a pseudo-CMAL coding Hh ich is equiva lent to the actua l
microcoded realization of adjoin; the registers CPU0 and CPU1 are mi croregisters dist inct from the wor kin g
e g is t e r s R0 , . .. RF.

res CPU0; sal CPU0,-3; fet; aloe; res CPU1; allocate econ
se l CPU1 , -1; sto; set e-c.on.ep
sav CPU0; sal CPU1 ,-2; sto; set e-con . ap
sav CPU1; sel CPU0 , -2 ; fet; mak i- lab; form entry i- lab
sav CPU1; return pointer to e-con for parameter passage

•

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 041 of 043

3.8.4. Module Exit Stack Instructions

CMAL provides 26 stack-related instructions for use in conjunction with program module exit. Hhen the virtual
processor IT is about to exit a program module M, the conceptual stack CS of IT (see section 2. 2) satisfies the
following conditions. If M has been entered as a task, then M is a procedure statement modu le and CS is
empty; in all other cases, CS contains at or near its top an exit instruction label EL. If His a statement
module then EL is the top record in CS; if M is an express ion module then an exit value EV is the top record
in CS and EL is the next-to-top record in CS. If M is a norma l program module then CS contains just be low EL
a register selector RS fo lloMed by associated SC!ved register contents; if M is a special system module the
r egister selector and saved contents may be absent. If an exit value EV is present, it is in the stack record
S which is attached to IT and constitutes the top stack record of the stack environment of IT. If M is a block
modul e then EL, RS, and saved register contents are in S; if M is a procedure module then EL, RS, and saved
register contents are the top records in the next lower stack record S' of the stack environment of IT. Exit
from a block module does not require a stack reversion; exit from a procedure module does require a stack
reversion and may even require a reversion to a duplicate of the next-to-top stack record of the stack
environment. Display vector update may require extraction of the ep of EL for use as a stack parameter to a
specialized system pro cedure for display update.

00 rs revert stack
This instruction is identical to the instruction "rev stk" of 3.1.2.01. Execution of this instruction
comprises the following steps. First, a copy SP of the stack pointer subrecord S.sp of the stack record S is
placed into a m icroreg ister. Second, if SP is null a fault occurs. Suppose that SP is non-null. Third, if
SP i s not a pointer to a stack record a fault occurs. Suppose that SP is a pointer to a stack record S'.
Fourth, if the reference count of S' exceeds 1 a fau l t occurs. Suppose that the reference count of S' equals
1. Fifth, a copy of SP is placed into the stack pointer register IT.sp of IT.

01 cs conditional duplicate revert stack
Execution of this instruction comprises the following steps. Firs t, a copy SP of the stack pointer subrecord
S.sp of the stack recordS is placed into a microregister. Second, if SP is null a fault occurs. Suppose
that SP is non-null. Third, if SP is not a pointer to a stack record a fault occurs. Suppose that SP is a
pointer to a stack record S'. Fourth, the reference count of S' .ref is inspected. If S' . ref equals 1 then a
copy of SP is placed into the stack pointer register IT.sp of n, and the execution is complete . If S' .ref
exceeds 1 then an exact duplicates·· of s· is allocated, the reference count of s·· is set to 1, a pointer to
s·· is placed into the stack pointer register n.sp of n. and the execution is complete.

02 ee extract environment pointer
Execution of this instruct ion comprises the following steps. Fi rst , if the stack S is empty or if its top
record is not an instruct ion label then a fault occurs. Suppose that the top record of S is an instruct ion
label and that EP is the environment pointer portion of that label. Second, a copy of EP is pushed onto S.

03 rl
Execution
record is
label EL.

restore label
of this instruct ion comprises the following steps . First, if the stack S is empty or if its top
not an instruct ion label then a fault occurs . Suppose that the top record of S is an instruct ion

Second, EL is popped from S and placed into the label register IT . lab of IT. Caution: this
instruction is not to be used for an intended leap.

04 d l discard label
Execu tion of this instruction comprlses the following steps. First, if the stackS lS empty or if its top
record is not an instruction label then a fault occurs. Suppose that the top record of Sis an instruction
label EL. Second, EL is popped from S.

05 rsee revert stack, extract environment pointer
Execution of this instruction comprises the following steps. First, the steps of "rs" are performed; a fault
may occur . Suppose that no fault occurs. Second , the steps of "ee" are performed.

06 csee conditional duplicat ion reve rt stack, extract environment pointer
Execution of this instruction comprises the fo llowing steps. First, the steps of "cs" are performed; a faul t
ma y occur. Suppose that no fault occurs. Second, the steps of "ee are performed .

07 rsrl revert stack, restore labe l
Execution of this instruction comprises the following steps . Fir st, the steps of "rs" are performed; a f au lt
may occur. Suppose that no fault occurs . Second, the steps of "r l" are performed.

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 042 of 043

08 csrl conditiona l duplication revert stack, restore label
Execution of this instruction comprises the following steps. First, the steps of "cs" are performed; a fault
may occur. Suppose that no fault occurs. Second, the steps of "rl" are performed.

09 rlrr restore label, restore registers
Execution of this instruction comprises the following steps. First, the steps of "rl" are performed; a fault
may occur. Suppose that no fault occurs. Second, if now the stack S is empty or if its top record is not a
register selector then a fault occurs. Suppose that the top record of S is a register selector M. Third, the
steps of "res " are performed (see 3.1.1.04).

10 dlrr discard label, restore registers
Execution of this instruction comprises the following steps. First, the steps of "dl" are performed; a fau l t
may occur. Suppose that no fault occurs. Second, if now the stack S is empty or if its top record is not a
register selector then a fault occurs. Suppose that the top record of S is a register selector M. Third, the
steps of "res" are performed (see 3.1.1.04) .

11 rsr lrr revert stack, restore label, restore registers
Execution of this instruction comprises the following steps. First, the steps of "rsrl" are performed; a
fault may occur. Suppose that no fault occurs. Second, the steps of "res" are performed (see 3.1.1.04).

12 csrlrr conditional duplicate revert stack, restore label, restore registers
Execution of this instruction comprises the following steps. First, the steps of "csrl " are performed; a
fault may occur. Suppose that no fault occurs. Second, the steps of "res " are performed (see 3.1.1.04).

13 rvrs retain value, revert stack
Execution of this instruct ion comprises the following steps. First, if the stack S is empty then a fault
occurs. Suppose that the top record of S is a mono record EV. Second, EV is popped from S to a
microregister. Third, the steps of "rs " are performed; a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV is pushed onto the stack record now attached to the virtual processor n.

14 rvcs retain value, conditional duplicate revert stack
Execution of this instruction comprises the following steps. First, if the stackS is empty then a fault
occurs. Suppose that the top record of S is a mono record EV . Second, EV is popped from S to a
microregister. Third, the steps of "cs" are performed; a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV is pushed onto the stack record now attached to the virtual processor n.

IS rvee retain value, extract environment pointer
Execution of this instruct ion comprises the following steps. First, if the stack S is empty then a fault
occurs. Suppose that the top record of S is a mono record EV. Second, EV is popped from S to a
microregister. Third, the steps of "ee" are performed; a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV is pushed onto S. Fifth, a "swp" is performed. The actual microcode realization of
"rvee " is more effecient than these steps indicate.

16 rvr l retain value, restore labe l
Execution of this instruct ion comprises the following steps. First, if the stack S is empty t hen a fau l t
occurs. Suppose that the top record of S is a mono record EV. Second, EV is popped from S to a
microregister. Third, the steps of "rl" are performed; a fault may occur . Suppose that no fault occurs.
Fourth, a copy of EV is pushed onto S.

17 rvdl retain value, discard label
Execution of this instruct ion comprises the following steps. First, if the stack S is empty then a fau l t
occurs. Suppose that the top record of S is a mono record EV. Second, EV is popped from S to a
microregister. Third, the steps of "dl " are performed; a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV is pushed onto S.

18 rvrsee retain value, revert stack, extract environme~t pointer
Execution of this instruction comprises the following steps. First, if the stackS is empty then a fau l t
occurs. Suppose that the top record of S is a mono record EV. Second, EV is popped from S to a
microregister. Third, the steps of "rsee" are performed; a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV is pushed onto the stack record now attached to the virtual processor IT. Fi fth, a "swp
is performed . The actual microcode realization of "rvrsee" is more efficient than these steps indicate.

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 0'13 of 0'13

19 rvcsee retain value, conditional duplicate revert stack, extract environment pointer
Execution of this ins t ruction comprises the following steps. First, if the stack S is empty then a fault
occurs. Suppose that the top record of Sis a mono record EV. Second , EV is popped from S to a
microreg ister. Th ird, the steps of ''csee " are performed: a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV is pushed onto the stack record now attached to the virtual processor n. Fifth, a "swp"
LS performed. The actual microcode realization of "rvcsee" is more efficient than these steps indicate,

20 rvrsrl retain value, revert stack, restore label
Execution of this instruction comprises the following steps. First, if the stackS is empty then a fault
occurs. Suppose that the top record of S is a mono record EV . Second, EV is popped from S to a
mi croregist er. Third, the steps of "rsrl" are performed: a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV is pus hed onto the stack record now attached to the virtual processo.r IT.

21 rvcsrl retain value, conditional duplicate revert stack, restore label
Execution of this inst r uctio n comprises the following steps . First, if the stackS is empty then a fault
occurs . Suppose that t he top record of S is a mono record EV . Second, EV is popped from S to a
mic r oreg ist er. Third, the steps of "csrl " are performed: a fault may occur . Suppose that no fault occurs.
Fourth, a copy of EV is pushed onto the stack record now attached to the virtual processor IT.

22 rvrlrr retain value, restore label, restore registers
Execution of this instruct ion comprises the following steps, First, if the stackS is empty then a fault
occurs. Suppose that th e t op record of S is a mono record EV. Second, EV is popped from S to a
microregister. Third, the steps of "rlrr" are performed: a fault may occur . Suppose that no fault occurs.
Fourth , a copy of EV is pushed onto S.

23 rvd lrr retain value, restore label, restore registers
Execution of this instruct ion comprises the following steps . First, if the stack S i s empty then a fault
occurs. Suppose that the top record of S is a mono record EV. Second, EV is popped from S to a
microregister. Third, the steps of "dlrr" are performed; a fauH may occur. Suppose that no fault occurs .
Fourth , a copy of EV is pushed onto S.

2~ rvrsrlrr retain value, revert stack, restore label, restore registers
Execution of this inst ruct ion comprises the fo llowing steps. First, if the stackS is empty then a fault
occurs. Suppose that the top record of S is a mono record EV. Second , EV is popped from S to a
micror egister . Third, the steps of "r srlrr " are performed; a fault may occur. Suppose that no fault occurs .
Fourth , a copy of EV is pushed onto the stack record now attached to the virtua l processor IT.

25 rvcsrlrr retain value , conditional duplication revert stack, restore label , restore registers
Execution of this instruct ion comprises the following steps. First, if the stack S is empty then a fault
occurs . Suppose that the top record of S is a mono record EV . Second, EV is popped from S to a
microregister. Third, the steps of "csrlrr" are performed; a fault may occur . Suppose that no fault occurs .
Fourth, a copy of EV is pu shed onto the stack record now attached to the virtual processor IT .

A complete listing of the 26 exit stack instructions LS g1ven below.

00 rs 13 rvrs
01 cs 14 rvcs
02 ee 15 rvee
03 r l 09 rlrr 16 rvrl 22 rvrlrr
0~ d l 10 dlrr 17 rvd l 23 rvdlrr
05 rsee 18 rvrsee
06 csee 19 rvcsee
07 rsrl 11 rsrlrr 20 rvrsr l 24 rvrsrlrr
08 csrl 12 csrlrr 21 rvcsr l 25 rvcsrlrr

